首页> 外文OA文献 >Random walk and graph cut for co-segmentation of lung tumor on PET-CT images
【2h】

Random walk and graph cut for co-segmentation of lung tumor on PET-CT images

机译:在PET-CT图像上随机游走和切图以共同分割肺肿瘤

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate lung tumor delineation plays an important role in radiotherapy treatment planning. Since the lung tumor has poor boundary in positron emission tomography (PET) images and low contrast in computed tomography (CT) images, segmentation of tumor in the PET and CT images is a challenging task. In this paper, we effectively integrate the two modalities by making fully use of the superior contrast of PET images and superior spatial resolution of CT images. Random walk and graph cut method is integrated to solve the segmentation problem, in which random walk is utilized as an initialization tool to provide object seeds for graph cut segmentation on the PET and CT images. The co-segmentation problem is formulated as an energy minimization problem which is solved by max-flow/ min-cut method. A graph, including two sub-graphs and a special link, is constructed, in which one sub-graph is for the PET and another is for CT, and the special link encodes a context term which penalizes the difference of the tumor segmentation on the two modalities. To fully utilize the characteristics of PET and CT images, a novel energy representation is devised. For the PET, a downhill cost and a 3D derivative cost are proposed. For the CT, a shape penalty cost is integrated into the energy function which helps to constrain the tumor region during the segmentation. We validate our algorithm on a data set which consists of 18 PET-CT images. The experimental results indicate that the proposed method is superior to the graph cut method solely using the PET or CT is more accurate compared with the random walk method, random walk co-segmentation method, and non-improved graph cut method.
机译:准确的肺肿瘤轮廓在放疗治疗计划中起着重要作用。由于肺肿瘤在正电子发射断层扫描(PET)图像中边界较差,而在计算机断层扫描(CT)图像中对比度较低,因此在PET和CT图像中分割肿瘤是一项艰巨的任务。在本文中,我们通过充分利用PET图像的出色对比度和CT图像的出色空间分辨率,有效地整合了这两种模态。集成了随机游走和图割的方法来解决分割问题,其中随机游走被用作初始化工具,为在PET和CT图像上进行图割的分割提供对象种子。共分段问题被表述为通过最大流量/最小切割方法解决的能量最小化问题。构造了一个包括两个子图和一个特殊链接的图,其中一个子图用于PET,另一个子图用于CT,并且该特殊链接编码一个上下文项,该上下文项惩罚了肿瘤​​分段在肿瘤上的差异。两种方式。为了充分利用PET和CT图像的特性,设计了一种新颖的能量表示方法。对于PET,提出了下坡成本和3D衍生成本。对于CT,形状损失成本已整合到能量函数中,这有助于在分割过程中限制肿瘤区域。我们在包含18个PET-CT图像的数据集上验证我们的算法。实验结果表明,与随机游走法,随机游动共分割法和非改进图割法相比,所提出的方法优于仅使用PET或CT的图形割法更为准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号