首页> 外文OA文献 >Controlled Forgetting: Targeted Stimulation and Dopaminergic Plasticity Modulation for Unsupervised Lifelong Learning in Spiking Neural Networks
【2h】

Controlled Forgetting: Targeted Stimulation and Dopaminergic Plasticity Modulation for Unsupervised Lifelong Learning in Spiking Neural Networks

机译:受控遗忘:针对尖峰神经网络中无监督终身学习的靶向刺激和多巴胺能塑性调制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stochastic gradient descent requires that training samples be drawn from a uniformly random distribution of the data. For a deployed system that must learn online from an uncontrolled and unknown environment, the ordering of input samples often fails to meet this criterion, making lifelong learning a difficult challenge. We exploit the locality of the unsupervised Spike Timing Dependent Plasticity (STDP) learning rule to target local representations in a Spiking Neural Network (SNN) to adapt to novel information while protecting essential information in the remainder of the SNN from catastrophic forgetting. In our Controlled Forgetting Networks (CFNs), novel information triggers stimulated firing and heterogeneously modulated plasticity, inspired by biological dopamine signals, to cause rapid and isolated adaptation in the synapses of neurons associated with outlier information. This targeting controls the forgetting process in a way that reduces the degradation of accuracy for older tasks while learning new tasks. Our experimental results on the MNIST dataset validate the capability of CFNs to learn successfully over time from an unknown, changing environment, achieving 95.24% accuracy, which we believe is the best unsupervised accuracy ever achieved by a fixed-size, single-layer SNN on a completely disjoint MNIST dataset.
机译:随机梯度下降要求从数据的均匀随机分布中汲取训练样本。对于必须从不受控制和未知的环境中在线学习的部署系统,输入样本的排序通常无法满足此标准,使终身学习艰难的挑战。我们利用无监督的尖峰定时依赖性可塑性(STDP)学习规则的局部地位,以瞄准尖刺神经网络(SNN)中的本地表示,以适应新颖的信息,同时保护灾难性遗忘的剩余部分中的基本信息。在我们的受控遗忘网络(CFN)中,新颖的信息触发刺激烧制和异相调制的可塑性,受生物多巴胺信号的启发,导致与异常信息相关的神经元突触中的快速和分离的适应。此目标以一种方式控制遗忘过程,以减少旧任务的准确性降低,同时学习新任务。我们在Mnist DataSet上的实验结果验证了CFNS从未知,更改环境中成功学习的能力,从而实现了95.24%的准确性,我们认为是通过固定尺寸的单层SNN实现的最佳无监督精度一个完全不相交的mnist数据集。

著录项

  • 作者

    Jason M. Allred; Kaushik Roy;

  • 作者单位
  • 年度 2020
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号