首页> 外文OA文献 >Comparing the Selected Transfer Functions and Local Optimization Methods for Neural Network Flood Runoff Forecast
【2h】

Comparing the Selected Transfer Functions and Local Optimization Methods for Neural Network Flood Runoff Forecast

机译:比较所选传递函数和神经网络洪水径流预测的局部优化方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The presented paper aims to analyze the influence of the selection of transfer function and training algorithms on neural network flood runoff forecast. Nine of the most significant flood events, caused by the extreme rainfall, were selected from 10 years of measurement on small headwater catchment in the Czech Republic, and flood runoff forecast was investigated using the extensive set of multilayer perceptrons with one hidden layer of neurons. The analyzed artificial neural network models with 11 different activation functions in hidden layer were trained using 7 local optimization algorithms. The results show that the Levenberg-Marquardt algorithm was superior compared to the remaining tested local optimization methods. When comparing the 11 nonlinear transfer functions, used in hidden layer neurons, the RootSig function was superior compared to the rest of analyzed activation functions.
机译:本文旨在分析对神经网络洪水径流预测的传递函数和培训算法的影响。由极端降雨引起的九个最重要的洪水事件,选自捷克共和国的小型麦克风集水区的10年,并使用广泛的多层意识形人进行了洪水径流预测,其中一系列隐藏的神经元。使用7个本地优化算法训练具有11个不同激活功能的分析的人工神经网络模型。结果表明,与剩余的测试局部优化方法相比,Levenberg-Marquardt算法优越。当比较隐藏层神经元中使用的11个非线性转移函数时,与分析的激活功能的其余部分相比,Rootsig函数优越。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号