首页> 外文OA文献 >SCADA Data Analysis Methods for Diagnosis of Electrical Faults to Wind Turbine Generators
【2h】

SCADA Data Analysis Methods for Diagnosis of Electrical Faults to Wind Turbine Generators

机译:SCADA数据分析方法,用于诊断风力涡轮发电机的电气故障

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The electric generator is estimated to be among the top three contributors to the failure rates and downtime of wind turbines. For this reason, in the general context of increasing interest towards effective wind turbine condition monitoring techniques, fault diagnosis of electric generators is particularly important. The objective of this study is contributing to the techniques for wind turbine generator fault diagnosis through a supervisory control and data acquisition (SCADA) analysis method. The work is organized as a real-world test-case discussion, involving electric damage to the generator of a Vestas V52 wind turbine sited in southern Italy. SCADA data before and after the generator damage have been analyzed for the target wind turbine and for reference healthy wind turbines from the same site. By doing this, it has been possible to formulate a normal behavior model, based on principal component analysis and support vector regression, for the power and for the voltages and currents of the wind turbine. It is shown that the incipience of the fault can be individuated as a change in the behavior of the residuals between model estimates and measurements. This phenomenon was clearly visible approximately two weeks before the fault. Considering the fast evolution of electrical damage, this result is promising as regards the perspectives of exploiting SCADA data for individuating electric damage with an advance that can be useful for applications in wind energy practice.
机译:估计发电机是失败率和风力涡轮机停机的前三个贡献者之一。因此,在对有效风力涡轮机状态监测技术的兴趣日益增加的一般背景下,发电机的故障诊断尤为重要。本研究的目的是通过监督控制和数据采集(SCADA)分析方法对风力涡轮发电机故障诊断的技术有所贡献。这项工作被组织为一个真实的测试案例讨论,涉及在意大利南部的Vestas V52风力涡轮机的发电机造成电动伤害。在发电机损坏之前和之后的SCADA数据已经分析了目标风力涡轮机和来自同一部位的参考健康风力涡轮机。通过这样做,已经可以基于主成分分析和支持向量回归,以及风力涡轮机的电压和电流来制定正常行为模型。结果表明,故障的兴趣可以作为模型估计和测量之间残差的行为的变化。这种现象在故障前大约两周明显可见。考虑到电气损坏的快速演变,这一结果很有前景对于利用SCADA数据的观点来说,利用对单独的电力损坏的预先进行电力损坏,这对于风能实践中的应用有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号