首页> 外文OA文献 >Efficient Online Surface Correction for Real-time Large-Scale 3D Reconstruction
【2h】

Efficient Online Surface Correction for Real-time Large-Scale 3D Reconstruction

机译:实时大型3D重建的高效在线曲面校正

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

State-of-the-art methods for large-scale 3D reconstruction from RGB-D sensorsusually reduce drift in camera tracking by globally optimizing the estimatedcamera poses in real-time without simultaneously updating the reconstructedsurface on pose changes. We propose an efficient on-the-fly surface correctionmethod for globally consistent dense 3D reconstruction of large-scale scenes.Our approach uses a dense Visual RGB-D SLAM system that estimates the cameramotion in real-time on a CPU and refines it in a global pose graphoptimization. Consecutive RGB-D frames are locally fused into keyframes, whichare incorporated into a sparse voxel hashed Signed Distance Field (SDF) on theGPU. On pose graph updates, the SDF volume is corrected on-the-fly using anovel keyframe re-integration strategy with reduced GPU-host streaming. Wedemonstrate in an extensive quantitative evaluation that our method is up to93% more runtime efficient compared to the state-of-the-art and requiressignificantly less memory, with only negligible loss of surface quality.Overall, our system requires only a single GPU and allows for real-time surfacecorrection of large environments.
机译:通过全局优化估计的估计基础姿势,从RGB-D的大规模3D重建的最先进的方法,敏感地减少了相机跟踪中的漂移,实时地没有同时更新姿势变化的重建曲面。我们提出了一种有效的型在一起的大规模场景中的全球一致的致密致密校正方法。我们的方法使用密集的Visual RGB-D SLAM系统,该系统实时地估计摄像机并在CPU上实时估计并将其改进全球姿态图形优化。连续的RGB-D帧将局部融合到关键帧中,将其纳入稀疏的voxel散列符号距离字段(SDF)上。在姿势图更新时,使用Anovel KeyFrame重新集成策略随着GPU-Host流的校正纠正SDF卷。 WeDemonstrate在广泛的定量评估中,我们的方法与最先进的运行时间高达93%,并且只能可忽略不计的表面质量损失.Overall,我们的系统只需要一个GPU并允许用于大型环境的实时冲浪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号