首页> 外文期刊>IEEE transactions on visualization and computer graphics >SLAMCast: Large-Scale, Real-Time 3D Reconstruction and Streaming for Immersive Multi-Client Live Telepresence
【24h】

SLAMCast: Large-Scale, Real-Time 3D Reconstruction and Streaming for Immersive Multi-Client Live Telepresence

机译:SLAMCast:沉浸式多客户端实时网真的大规模实时3D重构和流传输

获取原文
获取原文并翻译 | 示例

摘要

Real-time 3D scene reconstruction from RGB-D sensor data, as well as the exploration of such data in VRiAR settings, has seen tremendous progress in recent years. The combination of both these components into telepresence systems, however, comes with significant technical challenges. All approaches proposed so far are extremely demanding on input and output devices, compute resources and transmission bandwidth, and they do not reach the level of immediacy required for applications such as remote collaboration. Here, we introduce what we believe is the first practical client-server system for real-time capture and many-user exploration of static 3D scenes. Our system is based on the observation that interactive frame rates are sufficient for capturing and reconstruction, and real-time performance is only required on the client site to achieve lag-free view updates when rendering the 3D model. Starting from this insight, we extend previous voxel block hashing frameworks by introducing a novel thread-safe GPU hash map data structure that is robust under massively concurrent retrieval, insertion and removal of entries on a thread level. We further propose a novel transmission scheme for volume data that is specifically targeted to Marching Cubes geometry reconstruction and enables a 90% reduction in bandwidth between server and exploration clients. The resulting system poses very moderate requirements on network bandwidth, latency and client-side computation, which enables it to rely entirely on consumer-grade hardware, including mobile devices. We demonstrate that our technique achieves state-of-the-art representation accuracy while providing, for any number of clients, an immersive and fluid lag-free viewing experience even during network outages.
机译:近年来,根据RGB-D传感器数据进行实时3D场景重建,以及在VRiAR设置中探索此类数据,都取得了巨大进展。但是,将这两个组件组合到网真系统中会带来重大的技术挑战。到目前为止,提出的所有方法都对输入和输出设备,计算资源和传输带宽有极高的要求,并且它们还没有达到诸如远程协作之类的应用程序所需的即时性。在这里,我们介绍我们认为是第一个实用的客户端-服务器系统,用于实时捕获和多用户静态3D场景浏览。我们的系统基于以下观察:交互式帧速率足以捕获和重建,并且仅在客户端站点上才需要实时性能,以在渲染3D模型时实现无滞后的视图更新。从这一见识开始,我们通过引入一种新颖的线程安全GPU哈希映射数据结构来扩展以前的体素块哈希框架,该结构在大规模并发检索,插入和删除线程级别的条目时非常强大。我们还针对体积数据提出了一种新颖的传输方案,该方案专门针对Marching Cubes几何图形重构,并实现了服务器与勘探客户端之间的带宽减少90%。最终的系统对网络带宽,延迟和客户端计算提出了非常适中的要求,这使其能够完全依靠包括移动设备在内的消费级硬件。我们证明了我们的技术达到了最先进的表示精度,同时为任何数量的客户提供了即使在网络中断期间也能获得沉浸式和流畅无延迟的观看体验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号