首页> 外文OA文献 >Improved gradient local ternary patterns for facial expression recognition
【2h】

Improved gradient local ternary patterns for facial expression recognition

机译:改进的面部表情识别梯度局部三元模式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Automated human emotion detection is a topic of significant interest in the field of computer vision. Over the past decade, much emphasis has been on using facial expression recognition (FER) to extract emotion from facial expressions. Many popular appearance-based methods such as local binary pattern (LBP), local directional pattern (LDP) and local ternary pattern (LTP) have been proposed for this task and have been proven both accurate and efficient. In recent years, much work has been undertaken into improving these methods. The gradient local ternary pattern (GLTP) is one such method aimed at increasing robustness to varying illumination and random noise in the environment. In this paper, GLTP is investigated in more detail and further improvements such as the use of enhanced pre-processing, a more accurate Scharr gradient operator, dimensionality reduction via principal component analysis (PCA) and facial component extraction are proposed. The proposed method was extensively tested on the CK+ and JAFFE datasets using a support vector machine (SVM) and shown to further improve the accuracy and efficiency of GLTP compared to other common and state-of-the-art methods in literature.
机译:摘要自动人类的情感检测是计算机视觉领域显著感兴趣的话题。在过去的十年中,充分强调了对使用面部表情识别(FER)来提取面部表情的情感。许多流行的外观基础的方法,如局部二元模式(LBP),局部定向类型(LDP)和当地的三元模式(LTP)已经提出了这一任务,并已被证明既准确又高效。近年来,大量的工作已经进行到改进这些方法。梯度局部三元图案(GLTP)是旨在增加鲁棒性环境中的变化的照明和随机噪声一种这样的方法。在本文中,GLTP进行更详细和进一步的改进研究,如使用增强的前处理的,更准确的Scharr梯度算子,通过主成分分析(PCA)和面部分量提取降维提出。所提出的方法对所CK +和使用支持向量机(SVM)的数据集JAFFE广泛的测试,并显示出进一步改善相对于其他常用的和国家的最先进的方法在文献中GLTP的精度和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号