首页> 外文OA文献 >Work-Related Risk Assessment According to the Revised NIOSH Lifting Equation: A Preliminary Study Using a Wearable Inertial Sensor and Machine Learning
【2h】

Work-Related Risk Assessment According to the Revised NIOSH Lifting Equation: A Preliminary Study Using a Wearable Inertial Sensor and Machine Learning

机译:根据修订的Niosh升降式方程式与工作有关的风险评估:使用可穿戴惯性传感器和机器学习的初步研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many activities may elicit a biomechanical overload. Among these, lifting loads can cause work-related musculoskeletal disorders. Aspiring to improve risk prevention, the National Institute for Occupational Safety and Health (NIOSH) established a methodology for assessing lifting actions by means of a quantitative method based on intensity, duration, frequency and other geometrical characteristics of lifting. In this paper, we explored the machine learning (ML) feasibility to classify biomechanical risk according to the revised NIOSH lifting equation. Acceleration and angular velocity signals were collected using a wearable sensor during lifting tasks performed by seven subjects and further segmented to extract time-domain features: root mean square, minimum, maximum and standard deviation. The features were fed to several ML algorithms. Interesting results were obtained in terms of evaluation metrics for a binary risk/no-risk classification; specifically, the tree-based algorithms reached accuracies greater than 90% and Area under the Receiver operating curve characteristics curves greater than 0.9. In conclusion, this study indicates the proposed combination of features and algorithms represents a valuable approach to automatically classify work activities in two NIOSH risk groups. These data confirm the potential of this methodology to assess the biomechanical risk to which subjects are exposed during their work activity.
机译:许多活动可能会引起生物力学过载。其中,提升载荷会导致与工作有关的肌肉骨骼障碍。渴望改善风险预防,国家职业安全与健康研究所(Niosh)建立了一种通过基于强度,持续时间,频率和其他几何特征的定量方法来评估提升行动的方法。在本文中,我们探讨了机器学习(ML)可行性根据修订的Niosh提升方程来分类生物力学风险。使用可穿戴传感器在七次受试者执行的提升任务期间使用可穿戴传感器收集加速度和角速度信号,并进一步分割以提取时间域特征:根均值,最小,最大和标准偏差。该特征被送入了几毫升算法。有趣的结果是在评估指标中获得的二元风险/无风险分类;具体地,基于树的算法达到大于90%的精度,接收器操作曲线特性曲线大于0.9。总之,本研究表明,所提出的特征和算法组合代表了自动对两种Niosh风险群体中的工作活动进行了有价值的方法。这些数据确认了这种方法的潜力,以评估在其工作活动期间暴露受试者的生物力学风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号