首页> 外文OA文献 >A Depth-Adaptive Waveform Decomposition Method for Airborne LiDAR Bathymetry
【2h】

A Depth-Adaptive Waveform Decomposition Method for Airborne LiDAR Bathymetry

机译:空气传播潮汐浴碱的深度自适应波形分解方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Airborne LiDAR bathymetry (ALB) has shown great potential in shallow water and coastal mapping. However, due to the variability of the waveforms, it is hard to detect the signals from the received waveforms with a single algorithm. This study proposed a depth-adaptive waveform decomposition method to fit the waveforms of different depths with different models. In the proposed method, waveforms are divided into two categories based on the water depth, labeled as “shallow water (SW)” and “deep water (DW)”. An empirical waveform model (EW) based on the calibration waveform is constructed for SW waveform decomposition which is more suitable than classical models, and an exponential function with second-order polynomial model (EFSP) is proposed for DW waveform decomposition which performs better than the quadrilateral model. In solving the model’s parameters, a trust region algorithm is introduced to improve the probability of convergence. The proposed method is tested on two field datasets and two simulated datasets to assess the accuracy of the water surface detected in the shallow water and water bottom detected in the deep water. The experimental results show that, compared with the traditional methods, the proposed method performs best, with a high signal detection rate (99.11% in shallow water and 74.64% in deep water), low RMSE (0.09 m for water surface and 0.11 m for water bottom) and wide bathymetric range (0.22 m to 40.49 m).
机译:Airborne Lidar Bathymetry(ALB)在浅水和沿海映射方面表现出巨大的潜力。然而,由于波形的可变性,很难用单个算法检测来自接收波形的信号。本研究提出了一种深度自适应波形分解方法,以适应不同模型的不同深度的波形。在所提出的方法中,波形基于水深分为两类,标记为“浅水(SW)”和“深水(DW)”。基于校准波形的经验波形模型(EW)被构造为SW波形分解,其比经典模型更适合,并且提出了具有二阶多项式模型(EFSP)的指数函数,用于DW波形分解,其比该更好的波形分解四边形模型。在求解模型的参数时,引入了一种信任区域算法以提高收敛概率。在两个场数据集和两个模拟数据集上测试所提出的方法,以评估在深水中检测到的浅水中检测到的水面的精度。实验结果表明,与传统方法相比,所提出的方法表现最佳,具有高信号检测速率(浅水中99.11%,深水中的74.64%),低RMSE(水面为0.09μm,为0.11米水底)和宽碱基范围(0.22米至40.49米)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号