首页> 外文OA文献 >Gas Diffusion Layers in Fuel Cells and Electrolysers: A Novel Semi-Empirical Model to Predict Electrical Conductivity of Sintered Metal Fibres
【2h】

Gas Diffusion Layers in Fuel Cells and Electrolysers: A Novel Semi-Empirical Model to Predict Electrical Conductivity of Sintered Metal Fibres

机译:燃料电池中的气体扩散层和电解器:一种新型半实证模型,用于预测烧结金属纤维的电导率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper introduces novel empirical as well as modified models to predict the electrical conductivity of sintered metal fibres and closed-cell foams. These models provide a significant improvement over the existing models and reduce the maximum relative error from as high as just over 30% down to about 10%. Also, it is shown that these models provide a noticeable improvement for closed-cell metal foams. However, the estimation of electrical conductivity of open-cell metal foams was improved marginally over previous models. Sintered porous metals are widely used in electrochemical devices such as water electrolysers, unitised regenerative fuel cells (URFCs) as gas diffusion layers (GDLs), and batteries. Having a more accurate prediction of electrical conductivity based on variation by porosity helps in better modelling of such devices and hence achieving improved designs. The models presented in this paper are fitted to the experimental results in order to highlight the difference between the conductivity of sintered metal fibres and metal foams. It is shown that the critical porosity (maximum achievable porosity) can play an important role in sintered metal fibres to predict the electrical conductivity whereas its effect is not significant in open-cell metal foams. Based on the models, the electrical conductivity reaches zero value at 95% porosity rather than 100% for sintered metal fibres.
机译:本文介绍了新型实证以及改性模型,以预测烧结金属纤维和闭孔泡沫的电导率。这些模型对现有型号提供了显着的改进,并将最大的相对误差从高于超过30%降至约10%。此外,表明这些模型为闭孔金属泡沫提供了明显的改进。然而,在先前的模型上略微改善了开孔金属泡沫的导电性的估计。烧结多孔金属广泛用于电化学装置,例如水电解器,单位化的再生燃料电池(URFC)作为气体扩散层(GDL)和电池。基于孔隙率的变化具有更精确的导电性预测,有助于这种装置的更好建模,从而实现改进的设计。本文呈现的模型适用于实验结果,以突出烧结金属纤维和金属泡沫的电导率之间的差异。结果表明,关键孔隙率(最大可实现的孔隙率)可以在烧结金属纤维中起重要作用,以预测电导率,而其效果在开孔金属泡沫中不显着。基于模型,电导率在95%的孔隙率下达到零值,而不是100%用于烧结金属纤维。

著录项

  • 作者

    Reza Omrani; Bahman Shabani;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号