首页> 外文OA文献 >Prediction of Fracture Evolution and Groundwater Inrush from Karst Collapse Pillars in Coal Seam Floors: A Micromechanics-Based Stress-Seepage-Damage Coupled Modeling Approach
【2h】

Prediction of Fracture Evolution and Groundwater Inrush from Karst Collapse Pillars in Coal Seam Floors: A Micromechanics-Based Stress-Seepage-Damage Coupled Modeling Approach

机译:煤层气楼层岩溶塌陷支柱骨折进化与地下水涌入的预测:基于微机械的应力 - 渗流耦合耦合建模方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Karst collapse pillars (KCPs) frequently cause severe groundwater inrush disasters in coal mining above a confined aquifer. An accurate understanding of the damage and fracture evolution, permeability enhancement, and seepage changes in KCPs under the combined action of mining-induced stress and confined hydraulic pressure is of great significance for the early prediction and prevention of groundwater inrush from KCPs in coal seam floors. In this study, a micromechanics-based coupled stress-seepage-damage (SSD) modeling approach, in which the macroscopic mechanical and hydraulic properties of the rock are explicitly related to the microcrack kinetics, is proposed to simulate the fracture evolution and the associated groundwater flow in KCPs. An in situ high-precision microseismic monitoring technology is used to verify the micromechanical modeling results, which indicate that the numerical model successfully reproduces the damage and fracture evolution in a coal seam floor with a KCP during the mining process. The presented model also provides a visual representation of the complex process of KCP activation and groundwater inrush channel formation. A numerical study shows that the damage and activation of a KCP start from the edge of the KCP, gradually develop toward the interior of the KCP, and eventually connect with the damage fracture zone of the floor, forming a primary water-conducting channel in the KCP, causing the confined groundwater to flow into the working face. Groundwater inrush from a KCP is a gradual process instead of a mutation process. A reduction in the distance between the working face and a KCP and increases in the confined hydraulic pressure and the initial water-conducting height of the KCP can significantly increase the risk of groundwater inrush from the KCP.
机译:喀斯特崩溃支柱(KCPS)经常导致煤炭开采中的严重地下水涌入灾害。在采矿诱导的应力和限制液压的组合作用下,对KCP造成损伤和骨折演化,渗透性增强和渗流变化的准确了解,对于煤层煤层中KCP的早期预测和防止地下水涌入的预测和预测,对KCP进行了重大意义。在该研究中,基于微机械的耦合应力 - 渗流损坏(SSD)建模方法,其中岩石的宏观机械和液压性能明确地与微裂纹动力学有关,以模拟骨折进化和相关地下水在KCPS流动。原位高精度微震监测技术用于验证微机械建模结果,表明数值模型在采矿过程中成功再现煤层底板的损坏和断裂演变。该模型还提供了KCP激活和地下水浪涌通道形成的复杂过程的视觉表示。数值研究表明,KCP的损伤和激活从KCP的边缘开始,逐渐向KCP的内部发育,最终与地板的损伤骨折区域连接,形成初级排水通道KCP,导致狭窄的地下水流入工作面。来自KCP的地下水浪涌是逐渐处理而不是突变过程。工作面和KCP之间的距离减小并增加了KCP的限制液压和初始排水高度,可以显着增加来自KCP的地下水浪涌的风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号