首页> 外文OA文献 >Nonparametric statistical inference and imputation for incomplete categorical data
【2h】

Nonparametric statistical inference and imputation for incomplete categorical data

机译:不完整的分类数据的非参数统计推断和估算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Missingness in categorical data is a common problem in various realapplications. Traditional approaches either utilize only the completeobservations or impute the missing data by some ad hoc methods rather than thetrue conditional distribution of the missing data, thus losing or distortingthe rich information in the partial observations. In this paper, we develop aBayesian nonparametric approach, the Dirichlet Process Mixture of CollapsedProduct-Multinomials (DPMCPM), to model the full data jointly and compute themodel efficiently. By fitting an infinite mixture of product-multinomialdistributions, DPMCPM is applicable for any categorical data regardless of thetrue distribution, which may contain complex association among variables. Underthe framework of latent class analysis, we show that DPMCPM can model generalmissing mechanisms by creating an extra category to denote missingness, whichimplicitly integrates out the missing part with regard to their trueconditional distribution. Through simulation studies and a real application, wedemonstrated that DPMCPM outperformed existing approaches on statisticalinference and imputation for incomplete categorical data of various missingmechanisms. DPMCPM is implemented as the R package MMDai, which is availablefrom the Comprehensive R Archive Network athttps://cran.r-project.org/web/packages/MMDai/index.html.
机译:分类数据中的遗失是各种踩踏的常见问题。传统方法只能通过某些ad hoc方法使用reposentobservations或赋予丢失的数据,而不是缺少数据的条件分布,从而丢失或扭曲部分观察中的丰富信息。在本文中,我们开发了ABAYESIAN非参数方法,折叠产品 - 多项式(DPMCPM)的Dirichlet过程混合物,以有效地建模完整数据并计算它们。通过拟合产品 - 多型立体度的无限混合物,DPMCPM适用于任何分类数据,无论尺寸分布如何,都可能包含变量之间的复杂关联。在潜在阶级分析的框架下,我们表明DPMCPM可以通过创建额外的类别来模拟通知机制,以表示缺失,以其在其Truocondal分布方面将缺失部分集成在缺失部分。通过仿真研究和实际应用,DPMCPM呈现出现有的统计学校长和估算方法,对各种失踪机构的不完整分类数据的统计学方法。 DPMCPM实现为R包MMDAI,可通过全面的R存档网络Athttps://cran.r-project.org/web/packages/mmdai/index.html可用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号