首页> 外文OA文献 >A computer-based prediction platform for the reaction of ozone with organic compounds in aqueous solution: kinetics and mechanisms
【2h】

A computer-based prediction platform for the reaction of ozone with organic compounds in aqueous solution: kinetics and mechanisms

机译:基于计算机的预测平台,用于臭氧与水溶液中有机化合物的反应:动力学和机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ozonation of secondary wastewater effluents can reduce the discharge of micropollutants by transforming their chemical structures. Therefore, a better understanding of the formation of transformation products during ozonation is important. In this study, a computer-based prediction platform for the kinetics and mechanisms of the reactions of ozone with organic compounds was developed to enable in silico predictions of transformation products. With the developed prediction platform, reaction kinetics expressed as second-order rate constants for the reactions of ozone with selected organic compounds (kO3, M−1 s−1) can be predicted based on an adapted kO3 prediction model from a previous study (Lee et al., Environ. Sci. Technol., 2015, 49, 9925–9935) (average model error of about a factor of 6 for 14 compound classes with 284 model compounds). Ozone reaction mechanisms reported in the literature have been reviewed and, using chemoinformatics tools, encoded into about 340 individual reaction rules that can be generally applied to predict the transformation products of micropollutants. Predictions for kO3 and/or transformation products were overall consistent with the experimental data for three micropollutants used as validation compounds (e.g., carbamazepine, tramadol, and triclosan). However, limitations of the current kO3 prediction platform were also identified: ambiguous assignment of the n-th highest occupied molecular orbital energy (EHOMO−n) to the reactive sites, potential errors associated with the use of a gas-phase geometry, and a poor kO3 prediction for certain compounds (cetirizine). Therefore, the current prediction tool should not be considered as a substitute for experimental studies and experimental data are still required in the future to obtain a more robust prediction model. Nonetheless, the developed prediction platform, made available as a stand-alone graphical user interface (GUI) application, will provide useful information about aqueous ozone chemistry to various groups of end-users such as environmental chemists, engineers, or toxicologists.
机译:通过转化其化学结构,二级废水污水的臭氧可以减少微孔径的放电。因此,更好地了解在臭氧化过程中形成转化产品是重要的。在该研究中,开发了一种基于电脑的预测平台和臭氧的反应的机制与有机化合物的反应,以实现转化产物的硅预测。利用发育的预测平台,可以基于从先前研究的适应的KO3预测模型(LEE)基于来自先前研究的适应的KO3预测模型来预测作为臭氧的反应的反应动力学表达为臭氧的反应(KO3,M-1 S-1)(Lee等,环境。SCI。技术,2015,49,9925-9935)(14种复合类别的平均模型误差约为284种模型化合物的14级。在文献中报告的臭氧反应机制已经过审查,并且使用化疗的信息工具,编码成约340个单独的反应规则,这通常可以应用于预测微渗透剂的转化产物。 KO3和/或转化产物的预测总体上与用作验证化合物的三种微污染物的实验数据一致(例如,Carbamazepine,Tramadol和Triclosan)。然而,还鉴定了当前KO3预测平台的限制:对反应部位的第n个最高占用的分子轨道能量(EHOMO-N)的模糊分配,与使用气相几何形状相关的潜在误差,以及对某些化合物的KO3预测不佳(Cetirizine)。因此,当前预测工具不应被认为是实验研究的替代品,并在未来仍然需要实验数据以获得更强大的预测模型。尽管如此,发达的预测平台作为独立的图形用户界面(GUI)应用程序,将提供有关臭氧化学水化学的有用信息,例如环境化学家,工程师或毒理学家等各种终端用户。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号