首页> 外文OA文献 >Research on real – time tracking of table tennis ball based on machine learning with low-speed camera
【2h】

Research on real – time tracking of table tennis ball based on machine learning with low-speed camera

机译:基于低速摄像机的机器学习实时跟踪乒乓球实时跟踪研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes a novel method to track table tennis ball in real time by a low-speed camera instead of a high-speed one. Several difficult problems are solved for practical applications, such as environmental interference, smear in low-speed video images and slow processing speed. In view of these difficulties, the VOCUS system is used to segment images and mark the three significant regions based on three contrast colour channels. These regions are utilized for image matching using the LGP+adaboost algorithm. As a strong classifier based on machine learning, adaboost algorithm can recognize the features of smear balls with different shapes. Therefore, the region that is most similar to smear ball from the three significant regions is regarded as a target. Afterwards, through the moving ROI area algorithm, the identification time is greatly shortened in real-time video tracking. Finally, the feasibility of the algorithm is examined by experiments.
机译:本文提出了一种通过低速摄像机实时跟踪台网球的新方法而不是高速。解决了几个难题,用于实际应用,例如环境干扰,低速视频图像中的涂抹和缓慢的处理速度。鉴于这些困难,VOCUS系统用于基于三个对比色通道进行图像并标记三个重要地区。这些区域用于使用LGP + Adaboost算法进行图像匹配。作为一种基于机器学习的强分类器,Adaboost算法可以识别具有不同形状的涂片球的特征。因此,与来自三个重要区域的涂抹球最相似的区域被认为是目标。之后,通过移动ROI区域算法,在实时视频跟踪中大大缩短了识别时间。最后,通过实验检查算法的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号