首页> 外文OA文献 >Knowledge Reduction Based on Divide and Conquer Method in Rough Set Theory
【2h】

Knowledge Reduction Based on Divide and Conquer Method in Rough Set Theory

机译:基于粗糙集理论的划分和征服方法的知识减少

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The divide and conquer method is a typical granular computing method using multiple levels of abstraction and granulations. So far, although some achievements based on divided and conquer method in the rough set theory have been acquired, the systematic methods for knowledge reduction based on divide and conquer method are still absent. In this paper, the knowledge reduction approaches based on divide and conquer method, under equivalence relation and under tolerance relation, are presented, respectively. After that, a systematic approach, named as the abstract process for knowledge reduction based on divide and conquer method in rough set theory, is proposed. Based on the presented approach, two algorithms for knowledge reduction, including an algorithm for attribute reduction and an algorithm for attribute value reduction, are presented. Some experimental evaluations are done to test the methods on uci data sets and KDDCUP99 data sets. The experimental results illustrate that the proposed approaches are efficient to process large data sets with good recognition rate, compared with KNN, SVM, C4.5, Naive Bayes, and CART.
机译:除法和征服方法是一种使用多级抽象和颗粒的典型粒状计算方法。到目前为止,虽然已经获得了基于粗糙集理论的划分和征服方法的一些成就,但基于分裂和征管方法的知识减少系统方法仍然存在。本文介绍了基于划分和征服方法,在等价关系和公差关系下的知识减少方法。之后,提出了一种作为基于粗糙集理论的划分和征管方法的基于分裂和征服方法的知识降低的抽象过程的系统方法。基于所提出的方法,提出了两种知识减少的算法,包括用于属性降低的算法和用于属性值减少的算法。完成了一些实验评估以测试UCI数据集和KDDCUP99数据集的方法。实验结果表明,与KNN,SVM,C4.5,幼稚贝叶斯和推车相比,该方法的方法有效地处理具有良好识别率的大数据集。

著录项

  • 作者

    Feng Hu; Guoyin Wang;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号