首页> 外文OA文献 >Bayesian Nonparametric Modeling of Categorical Data for Information Fusion and Causal Inference
【2h】

Bayesian Nonparametric Modeling of Categorical Data for Information Fusion and Causal Inference

机译:贝叶斯非参数建模信息融合和因果推断的分类数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a nonparametric regression model of categorical time series in the setting of conditional tensor factorization and Bayes network. The underlying algorithms are developed to provide a flexible and parsimonious representation for fusion of correlated information from heterogeneous sources, which can be used to improve the performance of prediction tasks and infer the causal relationship between key variables. The proposed method is first illustrated by numerical simulation and then validated with two real-world datasets: (1) experimental data, collected from a swirl-stabilized lean-premixed laboratory-scale combustor, for detection of thermoacoustic instabilities and (2) publicly available economics data for causal inference-making.
机译:本文介绍了条件张量分解和贝叶网络的设置中的分类时间序列的非参数回归模型。开发底层算法以提供一种灵活且显着的表示,用于融合来自异构来源的相关信息,这可以用于改善预测任务的性能,并推断关键变量之间的因果关系。首先通过数值模拟首先说明所提出的方法,然后用两个现实世界数据集进行验证:(1)从旋流稳定的瘦预混实验室燃烧器中收集的实验数据,用于检测热声稳定性和(2)公开可用因果推断的经济学数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号