首页> 外文OA文献 >First-Order Methods for Constrained Convex Programming Based on Linearized Augmented Lagrangian Function
【2h】

First-Order Methods for Constrained Convex Programming Based on Linearized Augmented Lagrangian Function

机译:基于线性化增强拉格朗日函数的受约束编程的一阶方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

First-order methods have been popularly used for solving large-scaleproblems. However, many existing works only consider unconstrained problems orthose with simple constraint. In this paper, we develop two first-order methodsfor constrained convex programs, for which the constraint set is represented byaffine equations and smooth nonlinear inequalities. Both methods are based onthe classic augmented Lagrangian function. They update the multipliers in thesame way as the augmented Lagrangian method (ALM) but employ different primalvariable updates. The first method, at each iteration, performs a singleproximal gradient step to the primal variable, and the second method is a blockupdate version of the first one. For the first method, we establish its global iterate convergence as well asglobal sublinear and local linear convergence, and for the second method, weshow a global sublinear convergence result in expectation. Numericalexperiments are carried out on the basis pursuit denoising and a convexquadratically constrained quadratic program to show the empirical performanceof the proposed methods. Their numerical behaviors closely match theestablished theoretical results.
机译:一阶方法已被普遍地用于解决大型突破性问题。然而,许多现有的作品只考虑有没有判断的问题,以简单的约束。在本文中,我们开发了两个大奖方法,约束凸面程序,其中约束组是Byaffine方程表示和平滑的非线性不等式。两种方法都基于经典的增强拉格朗日函数。它们以CONEMED LAGRANGIAN方法(ALM)以CHESAME方式更新乘法器,但使用不同的PRIMALAIBLE更新。在每次迭代时,第一种方法对引流变量执行单次突出曲率梯度步骤,第二种方法是第一个方法的块化版本。对于第一种方法,我们建立了其全球迭代收敛以及且局部线性收敛,以及第二种方法,Weshow全球载入收敛导致期望。 NumericalExperiments在基础上进行的基础追踪和凸起约束的二次方案,以显示所提出的方法的经验表现。他们的数值行为与绝对匹配的理论结果密切相关。

著录项

  • 作者

    Yangyang Xu;

  • 作者单位
  • 年度 2021
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号