首页> 外文OA文献 >An Intelligent Warning Method for Diagnosing Underwater Structural Damage
【2h】

An Intelligent Warning Method for Diagnosing Underwater Structural Damage

机译:一种诊断水下结构损伤的智能警告方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A number of intelligent warning techniques have been implemented for detecting underwater infrastructure diagnosis to partially replace human-conducted on-site inspections. However, the extensively varying real-world situation (e.g., the adverse environmental conditions, the limited sample space, and the complex defect types) can lead to challenges to the wide adoption of intelligent warning techniques. To overcome these challenges, this paper proposed an intelligent algorithm combing gray level co-occurrence matrix (GLCM) with self-organization map (SOM) for accurate diagnosis of the underwater structural damage. In order to optimize the generative criterion for GLCM construction, a triangle algorithm was proposed based on orthogonal experiments. The constructed GLCM were utilized to evaluate the texture features of the regions of interest (ROI) of micro-injury images of underwater structures and extracted damage image texture characteristic parameters. The digital feature screening (DFS) method was used to obtain the most relevant features as the input for the SOM network. According to the unique topology information of the SOM network, the classification result, recognition efficiency, parameters, such as the network layer number, hidden layer node, and learning step, were optimized. The robustness and adaptability of the proposed approach were tested on underwater structure images through the DFS method. The results showed that the proposed method revealed quite better performances and can diagnose structure damage in underwater realistic situations.
机译:已经实施了许多智能警告技术,用于检测水下基础设施诊断,以部分替代人进行的现场检查。然而,广泛改变的现实情况(例如,不利的环境条件,有限的样品空间和复杂的缺陷类型)可能导致广泛采用智能警告技术的挑战。为了克服这些挑战,本文提出了一种智能算法,将灰度级共生矩阵(GLCM)与自组织地图(SOM)进行梳理,以便精确诊断水下结构损伤。为了优化GLCM结构的生成标准,基于正交实验提出了一种三角算法。构建的GLCM用于评估水下结构的微损伤图像的感兴趣区域(ROI)的纹理特征,提取损伤图像纹理特征参数。数字特征筛选(DFS)方法用于获得最相关的功能作为SOM网络的输入。根据SOM网络的独特拓扑信息,优化了分类结果,识别效率,参数,诸如网络层数,隐藏层节点和学习步骤的参数。通过DFS方法在水下结构图像上测试所提出的方法的鲁棒性和适应性。结果表明,该方法揭示了更好的表现,可以诊断水下现实情况的结构损坏。

著录项

  • 作者

    Kexin Li; Jun Wang; Dawei Qi;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号