首页> 外文OA文献 >A Filtering-Based Approach for Improving Crowdsourced GNSS Traces in a Data Update Context
【2h】

A Filtering-Based Approach for Improving Crowdsourced GNSS Traces in a Data Update Context

机译:一种基于过滤的方法,用于在数据更新上下文中改进众包GNSS迹线

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Traces collected by citizens using GNSS (Global Navigation Satellite System) devices during sports activities such as running, hiking or biking are now widely available through different sport-oriented collaborative websites. The traces are collected by citizens for their own purposes and frequently shared with the sports community on the internet. Our research assumption is that crowdsourced GNSS traces may be a valuable source of information to detect updates in authoritative datasets. Despite their availability, the traces present some issues such as poor metadata, attribute incompleteness and heterogeneous positional accuracy. Moreover, certain parts of the traces (GNSS points composing the traces) are results of the displacements made out of the existing paths. In our context (i.e., update authoritative data) these off path GNSS points are considered as noise and should be filtered. Two types of noise are examined in this research: Points representing secondary activities (e.g., having a lunch break) and points representing errors during the acquisition. The first ones we named secondary human behaviour (SHB), whereas we named the second ones outliers. The goal of this paper is to improve the smoothness of traces by detecting and filtering both SHB and outliers. Two methods are proposed. The first one allows for the detection secondary human behaviour by analysing only traces geometry. The second one is a rule-based machine learning method that detects outliers by taking into account the intrinsic characteristics of points composing the traces, as well as the environmental conditions during traces acquisition. The proposed approaches are tested on crowdsourced GNSS traces collected in mountain areas during sports activities.
机译:公民在跑步,徒步旅行或骑自行车等运动活动期间使用GNSS(全球导航卫星系统)设备收集的痕迹现在广泛地通过不同的运动型协作网站广泛使用。该迹线由公民收集,以其目的,并经常与互联网上的体育社区共享。我们的研究假设是众包GNSS迹线可以是检测权威数据集中的更新的有价值信息来源。尽管有了可用性,但痕迹呈现了一些问题,如差的元数据,属性不完整性和异构位置准确性。此外,迹线的某些部分(构成迹线的GNSS点)是由现有路径中的位移制成的结果。在我们的上下文中(即,更新权威数据),这些关闭路径GNSS点被视为噪声,并且应该被过滤。本研究中检查了两种类型的噪音:代表二次活动(例如,午休)和代表收购期间的误差点。我们命名的第一个次要人类行为(SHB),而我们将第二个异常值命名。本文的目标是通过检测和过滤SHB和异常值来提高迹线的平滑度。提出了两种方法。第一个允许通过仅分析迹线几何形状来检测二次人类行为。第二个是一种基于规则的机器学习方法,通过考虑构成迹线的点的内在特征以及在迹线采集期间的环境条件来检测异常值。在体育活动期间,拟议的方法对山区收集的众群GNSS痕迹进行了测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号