首页> 外文OA文献 >Enskog theory for polydisperse granular mixtures. III. Comparison of dense and dilute transport coefficients and equations of state for a binary mixture
【2h】

Enskog theory for polydisperse granular mixtures. III. Comparison of dense and dilute transport coefficients and equations of state for a binary mixture

机译:enskog理论为多分散粒状混合物。 III。二元混合物致密和稀释运输系数和状态方程的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The objective of this study is to assess the impact of a dense-phasetreatment on the hydrodynamic description of granular, binary mixtures relativeto a previous dilute-phase treatment. Two theories were considered for thispurpose. The first, proposed by Garz'o and Dufty (GD) [Phys. Fluids {f 14},146 (2002)], is based on the Boltzmann equation which does not incorporatefinite-volume effects, thereby limiting its use to dilute flows. The second,proposed by Garz'o, Hrenya and Dufty (GHD) [Phys. Rev. E {f 76}, 31303 and031304 (2007)], is derived from the Enskog equation which does account forfinite-volume effects; accordingly this theory can be applied to moderatelydense systems as well. To demonstrate the significance of the dense-phasetreatment relative to its dilute counterpart, the ratio of dense (GHD) todilute (GD) predictions of all relevant transport coefficients and equations ofstate are plotted over a range of physical parameters (volume fraction,coefficients of restitution, material density ratio, diameter ratio, andmixture composition). These plots reveal the deviation between the twotreatments, which can become quite large ($>$100%) even at moderate values ofthe physical parameters. Such information will be useful when choosing whichtheory is most applicable to a given situation, since the dilute theory offersrelative simplicity and the dense theory offers improved accuracy. It is alsoimportant to note that several corrections to original GHD expressions arepresented here in the form of a complete, self-contained set of relevantequations.
机译:这项研究的目的是评估相对于以前的稀相处理,密相处理对颗粒状二元混合物的流体动力学描述的影响。为此考虑了两种理论。第一个由Garz'o和Dufty(GD)提出[Phys。流体{ bf 14},146(2002)]是基于玻尔兹曼方程,该方程不包含有限体积效应,从而限制了其用于稀释流动的作用。第二,由Garz'o,Hrenya和Dufty(GHD)提出[Phys。修订版E { bf 76},31303和031304(2007)]是从Enskog方程得出的,该方程确实说明了有限体积效应;因此,该理论也可以应用于中等密度系统。为了证明密相处理相对于稀相处理的重要性,在一系列物理参数(体积分数,恢复系数)上绘制了所有相关传输系数和状态方程的密相(GHD)与稀相(GD)预测的比率,材料密度比,直径比和混合物组成)。这些图显示了两种处理之间的偏差,即使在适当的物理参数值下也可能变得非常大($> $ 100%)。当选择哪种理论最适合给定情况时,此类信息将很有用,因为稀疏理论提供了相对简单性,而稠密理论提供了更高的准确性。同样重要的是要注意,此处以完整,独立的一组相关等式的形式对原始GHD表达式进行了多次更正。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号