首页> 外文OA文献 >Environmentally Friendly Production of Methane from Natural Gas Hydrate Using Carbon Dioxide
【2h】

Environmentally Friendly Production of Methane from Natural Gas Hydrate Using Carbon Dioxide

机译:使用二氧化碳从天然气水合物的环保生产甲烷

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Huge amounts of natural gas hydrate are trapped in an ice-like structure (hydrate). Most of these hydrates have been formed from biogenic degradation of organic waste in the upper crust and are almost pure methane hydrates. With up to 14 mol% methane, concentrated inside a water phase, this is an attractive energy source. Unlike conventional hydrocarbons, these hydrates are widely distributed around the world, and might in total amount to more than twice the energy in all known sources of conventional fossil fuels. A variety of methods for producing methane from hydrate-filled sediments have been proposed and developed through laboratory scale experiments, pilot scale experiments, and theoretical considerations. Thermal stimulation (steam, hot water) and pressure reduction has by far been the dominating technology platforms during the latest three decades. Thermal stimulation as the primary method is too expensive. There are many challenges related to pressure reduction as a method. Conditions of pressure can be changed to outside the hydrate stability zone, but dissociation energy still needs to be supplied. Pressure release will set up a temperature gradient and heat can be transferred from the surrounding formation, but it has never been proven that the capacity and transport ability will ever be enough to sustain a commercial production rate. On the contrary, some recent pilot tests have been terminated due to freezing down. Other problems include sand production and water production. A more novel approach of injecting CO2 into natural gas hydrate-filled sediments have also been investigated in various laboratories around the world with varying success. In this work, we focus on some frequent misunderstandings related to this concept. The only feasible mechanism for the use of CO2 goes though the formation of a new CO2 hydrate from free water in the pores and the incoming CO2. As demonstrated in this work, the nucleation of a CO2 hydrate film rapidly forms a mass transport barrier that slows down any further growth of the CO2 hydrate. Addition of small amounts of surfactants can break these hydrate films. We also demonstrate that the free energy of the CO2 hydrate is roughly 2 kJ/mol lower than the free energy of the CH4 hydrate. In addition to heat release from the formation of the new CO2 hydrate, the increase in ion content of the remaining water will dissociate CH4 hydrate before the CO2 hydrate due to the difference in free energy.
机译:大量的天然气水合物被捕获在冰状结构(水合物)中。这些水合物中的大部分是由上层地壳中的有机废物的生物降解形成,并且几乎是纯甲烷水合物。最高可达14摩尔%的甲烷,浓缩在水相中,这是一种吸引力的能源。与常规烃不同,这些水合物广泛分布在世界各地,并且可以总量超过常规化石燃料的所有已知来源的两倍多。通过实验室规模实验,试验规模实验和理论考虑,提出了一种从水合物填充沉积物生产甲烷的各种方法。热刺激(蒸汽,热水)和减压在最近三十年来的主导技术平台上都是如此。热刺激作为主要方法太贵。有许多挑战与压力降低有关作为一种方法。压力条件可以改变到水合物稳定区外,但需要提供解离能。压力释放将建立温度梯度和热量可以从周围的形成转移,但从未证明能力和运输能力将足以维持商业生产率。相反,由于冻结,最近的一些试点测试已被终止。其他问题包括沙油生产和水产。在全球各地的各种实验室中,还研究了一种将CO2注入天然气水合物填充沉积物中的一种更新的方法。在这项工作中,我们专注于与这一概念相关的一些频繁的误解。使用CO2的唯一可行机制虽然形成了从孔中的自由水和进入的CO2中的新CO 2水合物的形成。如在该工作中所证明的,CO 2水合物膜的成核迅速形成大规模转运屏障,其减缓CO 2水合物的进一步生长。添加少量表面活性剂可以破坏这些水合物薄膜。我们还证明CO2水合物的自由能大约比CH4水合物的自由能量低约2kJ / mol。除了从形成新的CO2水合物的形成之外,剩余水的离子含量的增加将在CO 2水合物之前解离CH4水合物,由于自由能的差异。

著录项

  • 作者

    Bjørn Kvamme;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号