首页> 外文OA文献 >An End-to-End Oil-Spill Monitoring Method for Multisensory Satellite Images Based on Deep Semantic Segmentation
【2h】

An End-to-End Oil-Spill Monitoring Method for Multisensory Satellite Images Based on Deep Semantic Segmentation

机译:基于深度语义分割的多思型卫星图像的端到端油漏监测方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In remote-sensing images, a detected oil-spill area is usually affected by spot noise and uneven intensity, which leads to poor segmentation of the oil-spill area. This paper introduced a deep semantic segmentation method that combined a deep-convolution neural network with the fully connected conditional random field to form an end-to-end connection. On the basis of Resnet, it first roughly segmented a multisource remote-sensing image as input by the deep convolutional neural network. Then, we used the Gaussian pairwise method and mean-field approximation. The conditional random field was established as the output of the recurrent neural network. The oil-spill area on the sea surface was monitored by the multisource remote-sensing image and was estimated by optical image. We experimentally compared the proposed method with other models on the dataset established by the multisensory satellite image. Results showed that the method improved classification accuracy and captured fine details of the oil-spill area. The mean intersection over the union was 82.1%, and the monitoring effect was obviously improved.
机译:在遥感图像,检测到的油的泄漏区域通常是由斑点噪声和强度不均匀,这导致油泄漏区域的分割差的影响。本文介绍了深刻的语义分割方法,其结合完全连接条件随机场深卷积神经网络,以形成一个端至端连接。上RESNET的基础上,它首先粗略分割的多源通过深卷积神经网络的遥感图像作为输入。然后,我们用高斯配对法和平均场近似。有条件的随机领域被确立为反复发作的神经网络的输出。在海面上的油泄漏区域是由多源遥感图像监视和通过光学图像估计。我们实验比较了该方法与通过多感官的卫星图像建立了数据集等机型。结果表明,该方法提高了分类的准确性和油泄漏区域的捕捉精细的细节。在联盟平均交集为82.1%,和监控效果明显提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号