首页> 外文OA文献 >Extending Drag-and-Drop Actions-Based Model-to-Model Transformations with Natural Language Processing
【2h】

Extending Drag-and-Drop Actions-Based Model-to-Model Transformations with Natural Language Processing

机译:使用自然语言处理扩展基于拖放动作的模型到模型转换

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Model-to-model (M2M) transformations are among the key components of model-driven development, enabling a certain level of automation in the process of developing models. The developed solution of using drag-and-drop actions-based M2M transformations contributes to this purpose by providing a flexible, reusable, customizable, and relatively easy-to-use transformation method and tool support. The solution uses model-based transformation specifications triggered by user-initiated drag-and-drop actions within the model deployed in a computer-aided software engineering (CASE) tool environment. The transformations are called partial M2M transformations, meaning that a specific user-defined fragment of the source model is being transformed into a specific fragment of the target model and not running the whole model-level transformation. In this paper, in particular, we present the main aspects of the developed extension to that M2M transformation method, delivering a set of natural language processing (NLP) techniques on both the conceptual and implementation level. The paper addresses relevant developments and topics in the field of natural language processing and presents a set of operators that can be used to satisfy the needs of advanced textual preprocessing in the scope of M2M transformations. Also in this paper, we describe the extensions to the previous M2M transformation metamodel necessary for enabling the solution’s NLP-related capabilities. The usability and actual benefits of the proposed extension are introduced by presenting a set of specific partial M2M transformation use cases where natural language processing provides actual solutions to previously unsolvable situations when using the previous M2M transformation development.
机译:模型到型号(M2M)转换是模型驱动开发的关键组件之一,在开发模型过程中实现了一定的自动化。通过提供灵活,可重复使用,可自定义和相对易于使用的变换方法和工具支持,使用基于拖放动作的M2M变换的开发解决方案有助于实现这种目的。该解决方案使用由部署在计算机辅助软件工程(CASE)工具环境中的模型中的用户启动的拖放操作触发的基于模型的转换规范。转换称为部分M2M变换,这意味着源模型的特定用户定义的片段被转换为目标模型的特定片段,而不是运行整个模型级变换。在本文中,特别是我们向该M2M变换方法提供了开发扩展的主要方面,在概念和实现级别上提供一组自然语言处理(NLP)技术。本文涉及自然语言处理领域的相关发展和主题,并提供一组运营商,可用于满足M2M变换范围内的高级文本预处理的需求。同样在本文中,我们描述了先前M2M变换元模型的扩展,以实现解决方案的NLP相关功能。通过呈现一组特定部分M2M转换使用情况,引入了所提出的扩展的可用性和实际优势,其中自然语言处理在使用先前的M2M变换开发时为先前无法解决的情况提供实际解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号