首页> 外文OA文献 >Can bias correction and statistical downscaling methods improve the skill of seasonal precipitation forecasts?
【2h】

Can bias correction and statistical downscaling methods improve the skill of seasonal precipitation forecasts?

机译:偏压校正和统计缩小方法可以提高季节降水预测的技能吗?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Statistical downscaling methods are popular post-processing tools which are widely used in many sectors to adapt the coarse-resolution biased outputs from global climate simulations to the regional-to-local scale typically required by users. They range from simple and pragmatic Bias Correction (BC) methods, which directly adjust the model outputs of interest (e.g. precipitation) according to the available local observations, to more complex Perfect Prognosis (PP) ones, which indirectly derive local predictions (e.g. precipitation) from appropriate upper-air large-scale model variables (predictors). Statistical downscaling methods have been extensively used and critically assessed in climate change applications; however, their advantages and limitations in seasonal forecasting are not well understood yet. In particular, a key problem in this context is whether they serve to improve the forecast quality/skill of raw model outputs beyond the adjustment of their systematic biases. In this paper we analyze this issue by applying two state-of-the-art BC and two PP methods to downscale precipitation from a multimodel seasonal hindcast in a challenging tropical region, the Philippines. To properly assess the potential added value beyond the reduction of model biases, we consider two validation scores which are not sensitive to changes in the mean (correlation and reliability categories). Our results show that, whereas BC methods maintain or worsen the skill of the raw model forecasts, PP methods can yield significant skill improvement (worsening) in cases for which the large-scale predictor variables considered are better (worse) predicted by the model than precipitation. For instance, PP methods are found to increase (decrease) model reliability in nearly 40% of the stations considered in boreal summer (autumn). Therefore, the choice of a convenient downscaling approach (either BC or PP) depends on the region and the season.
机译:统计降级方法是受欢迎的后期处理工具,被广泛应用于许多领域,从全球气候模拟粗分辨率偏置输出适应一般用户所需的从区域到局部范围。它们的范围从简单和实用的偏差校正(BC)的方法,它直接调整感兴趣的模型输出根据可用的本地观测(例如沉淀),以更复杂的完美预后(PP)的,这间接导出本地预测(例如沉淀)从适当的高空大规模模型变量(预测)。统计降级方法已被广泛使用,并严格评估气候变化的应用;然而,他们在季节预报优点和局限性都没有得到很好的被了解。特别是,在这方面的一个关键问题是,他们是否有助于改善超出了他们的系统偏差的调整原模型输出的预测质量/技能。在本文中,我们分析在一个具有挑战性的热带地区,菲律宾粘贴状态的最技术的具有两种BC和两个PP的方法来缩减沉淀从多模式后报季节性这个问题。要正确地评估潜在的增值超出模式偏差的减少,我们考虑两个验证分数不属于在均值(相关性和可靠性类别)的变化很敏感。我们的研究结果表明,而BC方法的情况下维持或加重的原始模型预报的技能,PP方法可以产生显著技能提升(恶化)的会议审议了大型的预测变量是好(差)由模型比预测沉淀。例如,发现PP的方法来提高近40%,在北半球夏季(秋季)认为站(减少)模型的可靠性。因此,一个方便的缩减方法(无论是BC或PP)的选择取决于该区域和季节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号