首页> 外文OA文献 >A Preconditioned Iterative Approach for Efficient Full Chip Thermal Analysis on Massively Parallel Platforms
【2h】

A Preconditioned Iterative Approach for Efficient Full Chip Thermal Analysis on Massively Parallel Platforms

机译:大型平行平台有效全芯片热分析的预处理迭代方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Efficient full-chip thermal simulation is among the most challenging problems facing the EDA industry today, especially for modern 3D integrated circuits, due to the huge linear systems resulting from thermal modeling approaches that require unreasonably long computational times. While the formulation problem, by applying a thermal equivalent circuit, is prevalent and can be easily constructed, the corresponding 3D equations network has an undesirable time-consuming numerical simulation. Direct linear solvers are not capable of handling such huge problems, and iterative methods are the only feasible approach. In this paper, we propose a computationally-efficient iterative method with a parallel preconditioned technique that exploits the resources of massively-parallel architectures such as Graphic Processor Units (GPUs). Experimental results demonstrate that the proposed method achieves a speedup of 2.2× in CPU execution and a 26.93× speedup in GPU execution over the state-of-the-art iterative method.
机译:高效的全芯片热仿真是当今EDA行业面临的最具挑战性的问题之一,特别是对于现代3D集成电路,由于需要不合理的长度计算时间的热建模方法产生的巨大线性系统。虽然通过应用热量等效电路普遍且可以容易地构造的制构问题,但相应的3D方程网络具有不希望的耗时的数值模拟。直接线性溶剂不能处理如此巨大的问题,迭代方法是唯一可行的方法。在本文中,我们提出了一种具有并行预处理技术的计算上有效的迭代方法,该方法利用了诸如图形处理器单元(GPU)的大规模平行架构的资源。实验结果表明,所提出的方法在CPU执行中实现了2.2倍的加速,并通过最先进的迭代方法在GPU执行中加速26.93倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号