首页> 外文期刊>Journal of Theoretical and Computational Chemistry >QUANTUM DYNAMICS ON MASSIVELY PARALLEL COMPUTERS: EFFICIENT NUMERICAL IMPLEMENTATION FOR PRECONDITIONED LINEAR SOLVERS AND EIGENSOLVERS
【24h】

QUANTUM DYNAMICS ON MASSIVELY PARALLEL COMPUTERS: EFFICIENT NUMERICAL IMPLEMENTATION FOR PRECONDITIONED LINEAR SOLVERS AND EIGENSOLVERS

机译:大规模并行计算机上的量子动力学:条件线性解和本征解的有效数值实现

获取原文
获取原文并翻译 | 示例
           

摘要

The eigenvalue/eigenvector and linear solve problems arising in computational quantum dynamics applications (e.g. rovibrational spectroscopy, reaction cross-sections, etc.) often involve large sparse matrices that exhibit a certain block structure. In such cases, specialized iterative methods that employ optimal separable basis (OSB) preconditioners (derived from a block Jacobi diagonalization procedure) have been found to be very efficient, vis-à-vis reducing the required CPU effort on serial computing platforms. Recently,1,2 a parallel implementation was introduced, based on a nonstandard domain decomposition scheme. Near-perfect parallel scalability was observed for the OSB preconditioner construction routines up to hundreds of nodes; however, the fundamental matrix–vector product operation itself was found not to scale well, in general. In addition, the number of nodes was selectively chosen, so as to ensure perfect load balancing. In this paper, two essential improvements are discussed: (1) new algorithm for the matrix–vector product operation with greatly improved parallel scalability and (2) generalization for arbitrary number of nodes and basis sizes. These improvements render the resultant parallel quantum dynamics codes suitable for robust application to a wide range of real molecular problems, running on massively parallel computing architectures.
机译:在计算量子动力学应用中(例如振动光谱法,反应截面等)出现的特征值/特征向量和线性求解问题通常涉及具有特定块结构的大型稀疏矩阵。在这种情况下,已经发现采用最佳可分基础(OSB)预处理器(源自块Jacobi对角化过程)的专用迭代方法非常有效,以减少串行计算平台上所需的CPU工作量。最近,1,2,一种基于非标准域分解方案的并行实现被引入。对于多达数百个节点的OSB预调节器构造例程,观察到近乎完美的并行可伸缩性。然而,一般来说,基本矩阵-向量乘积运算本身并不能很好地扩展。另外,有选择地选择节点数,以确保完美的负载平衡。在本文中,讨论了两个重要的改进:(1)用于矩阵-矢量乘积运算的新算法,具有大大提高的并行可伸缩性;(2)概括了任意数量的节点和基本大小。这些改进使得合成的并行量子动力学代码适合于在大规模并行计算体系结构上运行的各种实际分子问题的稳健应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号