首页> 外文OA文献 >DeepHiC: A generative adversarial network for enhancing Hi-C data resolution
【2h】

DeepHiC: A generative adversarial network for enhancing Hi-C data resolution

机译:Deephic:一种用于增强Hi-C数据分辨率的生成对抗网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hi-C is commonly used to study three-dimensional genome organization. However, due to the high sequencing cost and technical constraints, the resolution of most Hi-C datasets is coarse, resulting in a loss of information and biological interpretability. Here we develop DeepHiC, a generative adversarial network, to predict high-resolution Hi-C contact maps from low-coverage sequencing data. We demonstrated that DeepHiC is capable of reproducing high-resolution Hi-C data from as few as 1% downsampled reads. Empowered by adversarial training, our method can restore fine-grained details similar to those in high-resolution Hi-C matrices, boosting accuracy in chromatin loops identification and TADs detection, and outperforms the state-of-the-art methods in accuracy of prediction. Finally, application of DeepHiC to Hi-C data on mouse embryonic development can facilitate chromatin loop detection. We develop a web-based tool (DeepHiC, http://sysomics.com/deephic) that allows researchers to enhance their own Hi-C data with just a few clicks.
机译:HI-C通常用于研究三维基因组组织。然而,由于高测序成本和技术限制,大多数Hi-C数据集的分辨率是粗糙的,导致信息丢失和生物解释性。在这里,我们开发Deephic,一种生成的对抗性网络,以预测来自低覆盖序列测序数据的高分辨率Hi-C联系地图。我们展示Deephic能够从较少的读取读数中再现高分辨率Hi-C数据。通过对抗性培训授权,我们的方法可以恢复与高分辨率Hi-C矩阵中的细粒细节,染色质循环识别和TADS检测中的准确性,并且在预测准确性方面优于最先进的方法。最后,在小鼠胚胎发育上的Deephic施加Hi-C数据可以促进染色质环路检测。我们开发基于Web的工具(Deephic,http://sysomics.com/deephic),允许研究人员使用几次点击即可增强自己的Hi-C数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号