首页> 外文OA文献 >KECA Similarity-Based Monitoring and Diagnosis of Faults in Multi-Phase Batch Processes
【2h】

KECA Similarity-Based Monitoring and Diagnosis of Faults in Multi-Phase Batch Processes

机译:基于KECA的相似性的监测和诊断多相批处理过程中的故障

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multiple phases with phase to phase transitions are important characteristics of many batch processes. The linear characteristics between phases are taken into consideration in the traditional algorithms while nonlinearities are neglected, which can lead to inaccuracy and inefficiency in monitoring. The focus of this paper is nonlinear multi-phase batch processes. A similarity metric is defined based on kernel entropy component analysis (KECA). A KECA similarity-based method is proposed for phase division and fault monitoring. First, nonlinear characteristics can be extracted in feature space via performing KECA on each preprocessed time-slice data matrix. Then phase division is achieved with the similarity variation of the extracted feature information. Then, a series of KECA models and slide-KECA models are established for steady and transitions phases respectively, which can reflect the diversity of transitional characteristics objectively and preferably deal with the stage-transition monitoring problem in multistage batch processes. Next, in order to overcome the problem that the traditional contribution plot cannot be applied to the kernel mapping space, a nonlinear contribution plot diagnosis algorithm is proposed, which is easier, more intuitive and implementable compared with the traditional one. Finally, simulations are performed on penicillin fermentation and industrial application. Specifically, the proposed method detects the abnormal agitation power and the abnormal substrate supply at 47 h and 86 h, respectively. Compared with traditional methods, it has better real-time performance and higher efficiency. Results demonstrate the ability of the proposed method to detect faults accurately and effectively in practice.
机译:具有相位转变的多相是许多批处理过程的重要特征。在传统算法中考虑相位之间的线性特性,而非线性被忽略,这可能导致监测不准确和效率低。本文的重点是非线性多相批处理过程。基于内核熵分量分析(KECA)来定义相似度量。提出了基于KECA相似性的方法进行分割和故障监控。首先,可以通过在每个预处理的时间切片数据矩阵上执行Keca在特征空间中在特征空间中提取非线性特性。然后通过提取的特征信息的相似变化来实现相位划分。然后,建立了一系列KECA模型和SLIDE-KECA模型,分别用于稳定和过渡相位,其可以客观地反映过渡特征的分集,并且优选地处理多级批处理过程中的舞台过渡监测问题。接下来,为了克服传统贡献曲线不能应用于内核映射空间的问题,提出了一种非线性贡献绘图诊断算法,与传统相比更容易,更直观和可实现。最后,对青霉素发酵和工业应用进行了模拟。具体地,所提出的方法分别检测47小时和86小时的异常搅拌功率和异常基板供应。与传统方法相比,它具有更好的实时性能和更高的效率。结果证明了所提出的方法在实践中准确且有效地检测故障的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号