首页> 外文OA文献 >Morphological transformation of soot: investigation of microphysical processes during the condensation of sulfuric acid and limonene ozonolysis product vapors
【2h】

Morphological transformation of soot: investigation of microphysical processes during the condensation of sulfuric acid and limonene ozonolysis product vapors

机译:烟灰的形态学转化:硫酸和柠檬烯臭氧溶解产物蒸汽凝结过程中的微观工艺研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The morphological transformation of soot particles via condensation oflow-volatility materials constitutes a dominant atmospheric process withserious implications for the optical and hygroscopic properties, as well asatmospheric lifetime of the soot. We consider the morphologicaltransformation of soot aggregates under the influence of condensation ofvapors of sulfuric acid, and/or limonene ozonolysis products. This influencewas systematically investigated using a Differential Mobility Analyzercoupled with an Aerosol Particle MassAnalyzer (DMA–APM) and the Tandem DMA techniques integrated with a laminarflow-tube system. We hypothesize that the morphology transformation of sootresults (in general) from a two-step process, i.e., (i) filling of void spacewithin the aggregate and (ii) growth of the particle diameter. Initially, thetransformation was dominated by the filling process followed by growth, whichled to the accumulation of sufficient material that exerted surface forces,which eventually facilitated further filling. The filling of void space wasconstrained by the initial morphology of the fresh soot as well as the natureand the amount of condensed material. This process continued in severalsequential steps until all void space within the soot aggregate was filled.And then growth of a spherical particle continued as long as vaporscondensed on it. We developed a framework for quantifying the microphysicaltransformation of soot upon the condensation of various materials. Thisframework used experimental data and the hypothesis of ideal spheregrowth and void filling to quantify the distribution of condensed materialsin the complementary filling and growth processes. Using this framework, wequantified the percentage of material consumed by these processes at eachstep of the transformation. For the largest coating experiments, 6, 10, 24,and 58 % of condensed material went to filling process, while 94, 90, 76,and 42 % of condensed material went to growth process for 75, 100, 150,and 200 nm soot particles, respectively. We also used the framework toestimate the fraction of internal voids and open voids. This information wasthen used to estimate the volume-equivalent diameter of the soot aggregatecontaining internal voids and to calculate the dynamic shape factor,accounting for internal voids. The dynamic shape factor estimated based onthe traditional assumption (of no internal voids) differed significantly fromthe value obtained in this study. Internal voids are accounted for in theexperimentally derived dynamic shape factor determined in the present study.In fact, the dynamic shape factor adjusted for internal voids was close to 1for the fresh soot particles considered in this study, indicating theparticles were largely spherical. The effective density was stronglycorrelated with the morphological transformation responses to the condensedmaterial on the soot particle, and the resultant effective density wasdetermined by the (i) nature of the condensed material and (ii) morphologyand size of the fresh soot. In this work we quantitatively tracked in situmicrophysical changes in soot morphology, providing details of both fresh andcoated soot particles at each step of the transformation. This framework canbe applied to model development with significant implications for quantifyingthe morphological transformation (from the viewpoint of hygroscopic andoptical properties) of soot in the atmosphere.
机译:通过冷凝的烟灰颗粒的形态转化低挥发性材料构成了主要的大气过程对光学和吸湿性的性质以及烟灰的大气寿命。我们认为形态学凝结凝结影响下的烟灰骨料的转化硫酸蒸气和/或柠檬烯臭氧溶解产物。这种影响使用差分移动分析仪系统地进行了系统研究加上气溶胶颗粒质量分析仪(DMA-APM)和与层流集成的串联DMA技术流管系统。我们假设烟灰的形态转化结果(一般来说)从两步过程中,即(i)填充空隙空间在骨料和(ii)粒径的生长内。最初,这是转型由填充过程主导,然后进行生长,这导致施加表面力的足够材料的积累,最终促进进一步填充。空隙空间的填充是受新鲜烟灰的最初形态以及性质的限制和冷凝材料的量。这个过程继续在几个连续步骤,直到填充烟灰骨料内的所有空隙空间。然后,球形粒子的生长仍在蒸气中持续凝结在它上面。我们开发了一种量化微神经物理的框架各种材料冷凝时烟灰的转化。这个框架使用了实验数据和理想球体的假设增长和空隙填充,以量化浓缩材料的分布在互补填充和生长过程中。使用此框架,我们量化这些过程所消耗的材料的百分比转型的步骤。对于最大的涂层实验,6,10,24,和58%的浓缩材料进入填充过程,而94,90,76,42%的浓缩材料达到75,100,150的生长过程,分别为200纳米烟灰颗粒。我们也使用该框架估计内部空隙和开放空隙的分数。这些信息是然后用于估计烟灰骨料的体积等效直径包含内部空隙并计算动态形状因子,会计内部空隙。基于的动态形状因子估计传统的假设(无内部空隙)显着不同本研究中获得的值。内部空隙被占了在本研究中确定的实验衍生动态形状因子。实际上,用于内部空隙的动态形状因子接近1对于本研究中考虑的新鲜烟灰颗粒,表示颗粒很大程度上是球形的。有效密度强烈与凝聚的形态转化响应相关在烟灰颗粒上的材料,并产生有效密度由(i)缩合材料的(i)性质和(ii)的形态决定和新鲜烟灰的大小。在这项工作中,我们以原位定量追踪烟灰形态的微手术变化,提供新鲜和新鲜的细节在转化的每个步骤中涂覆烟灰颗粒。这个框架可以应用于模型开发,具有对量化的重大影响形态学转化(从吸湿和湿镜的角度来看)在大气中烟灰的光学性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号