首页> 外文OA文献 >A novel sparse representation algorithm for AIS real-time signals
【2h】

A novel sparse representation algorithm for AIS real-time signals

机译:一种用于AIS实时信号的新型稀疏表示算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Sparse representation of signals based on a redundant dictionary is a new signal representation theory. Recent research activities in this field have concentrated mainly on the study of dictionary design and sparse decomposition algorithms. Currently, the application of sparse representation on an Automatic Identification System (AIS) signal still requires further investigations. In this paper, a novel sparse representation of the AIS signal is proposed based on an adaptive redundant dictionary. Considering the characteristics of the AIS signal, an adaptive redundant dictionary is constructed using the K singular value decomposition (K-SVD) algorithm. Furthermore, an effective pursuit algorithm is proposed to obtain the sparse representation of AIS signal using the adaptive dictionary. The binary AIS message is demodulated from the sparse representation of AIS signal. The experimental results indicate that the sparse representation of the AIS signal has high accuracy and the reconstructive error rate can be under 10%; thus, the reconstructive precision is simultaneously guaranteed. The processing time of the proposed sparse representation algorithm is less than 26.7 ms which satisfies the requirements of AIS real-time signal processing. It shows that introducing the signal sparse representation in a real-time signal system obtains a satisfactory result.
机译:摘要基于冗余词典的信号的疏散表示是一种新的信号表示理论。该领域最近的研究活动主要集中在字典设计和稀疏分解算法的研究。目前,在自动识别系统(AIS)信号上的稀疏表示仍需要进一步调查。在本文中,基于自适应冗余词典提出了一种新的AIS信号的稀疏表示。考虑到AIS信号的特征,使用K个奇异值分解(K-SVD)算法构建自适应冗余词典。此外,提出了有效的追踪算法来获得使用自适应词典获得AIS信号的稀疏表示。二进制AIS消息从AIS信号的稀疏表示解调。实验结果表明,AIS信号的稀疏表示具有高精度,重建错误率可能低于10%;因此,同时保证重建精度。所提出的稀疏表示算法的处理时间小于26.7ms,满足AIS实时信号处理的要求。图3示出了在实时信号系统中引入信号稀疏表示获得令人满意的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号