首页> 外文OA文献 >Optimizing long short-term memory recurrent neural networks using ant colony optimization to predict turbine engine vibration
【2h】

Optimizing long short-term memory recurrent neural networks using ant colony optimization to predict turbine engine vibration

机译:利用蚁群优化优化长短期内存经常性神经网络,以预测涡轮发动机振动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This article expands on research that has been done to develop a recurrentneural network (RNN) capable of predicting aircraft engine vibrations usinglong short-term memory (LSTM) neurons. LSTM RNNs can provide a moregeneralizable and robust method for prediction over analytical calculations ofengine vibration, as analytical calculations must be solved iteratively basedon specific empirical engine parameters, making this approach ungeneralizableacross multiple engines. In initial work, multiple LSTM RNN architectures wereproposed, evaluated and compared. This research improves the performance of themost effective LSTM network design proposed in the previous work by using apromising neuroevolution method based on ant colony optimization (ACO) todevelop and enhance the LSTM cell structure of the network. A parallelizedversion of the ACO neuroevolution algorithm has been developed and the evolvedLSTM RNNs were compared to the previously used fixed topology. The evolvednetworks were trained on a large database of flight data records obtained froman airline containing flights that suffered from excessive vibration. Resultswere obtained using MPI (Message Passing Interface) on a high performancecomputing (HPC) cluster, evolving 1000 different LSTM cell structures using 168cores over 4 days. The new evolved LSTM cells showed an improvement of 1.35%,reducing prediction error from 5.51% to 4.17% when predicting excessive enginevibrations 10 seconds in the future, while at the same time dramaticallyreducing the number of weights from 21,170 to 11,810.
机译:本文扩展了开发复制网络(RNN)的研究,该研究能够预测使用延伸短期记忆(LSTM)神经元的飞机发动机振动。 LSTM RNN可以提供一种更加难以相互的和稳健的方法,用于预测分析计算的预测,因为分析计算必须迭代地基于特定的经验发动机参数,使得这种方法是UngeneralizableScross多个发动机。在初始化工作中,多个LSTM RNN架构均出售,评估和比较。本研究通过使用基于蚁群优化(ACO)Todevelop的Apromising NeureVolution方法,提高了先前工作中提出的Post效率有效LSTM网络设计的性能,提高了网络的LSTM单元结构。已经开发了ACO神经畸形算法的平行化,并且将EVOLVEDLSTM RNN与先前使用的固定拓扑进行了比较。 EvolvedNetworks培训了从含有过度振动的航空公司获得的航空公司获得的大型航班数据记录数据库。使用MPI(消息传递接口)在高性能(HPC)群集上获得结果,在4天内使用168cores演变1000个不同的LSTM单元结构。当未来10秒钟预测过量发动机时,新的进化LSTM细胞的提高为1.35%,从5.51%降低预测误差为5.51%至4.17%,同时速度地称为从21,170到11,810的重量数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号