首页> 外文期刊>Applied Soft Computing >Optimizing long short-term memory recurrent neural networks using ant colony optimization to predict turbine engine vibration
【24h】

Optimizing long short-term memory recurrent neural networks using ant colony optimization to predict turbine engine vibration

机译:利用蚁群优化优化长短期内存经常性神经网络,以预测涡轮发动机振动

获取原文
获取原文并翻译 | 示例
           

摘要

This article expands on research that has been done to develop a recurrent neural network (RNN) capable of predicting aircraft engine vibrations using long short-term memory (LSTM) neurons. LSTM RNNs can provide a more generalizable and robust method for prediction over analytical calculations of engine vibration, as analytical calculations must be solved iteratively based on specific empirical engine parameters, making this approach ungeneralizable across multiple engines. In initial work, multiple LSTM RNN architectures were proposed, evaluated and compared. This research improves the performance of the most effective LSTM network design proposed in the previous work by using a promising neuroevolution method based on ant colony optimization (ACO) to develop and enhance the LSTM cell structure of the network. A parallelized version of the ACO neuroevolution algorithm has been developed and the evolved LSTM RNNs were compared to the previously used fixed topology. The evolved networks were trained on a large database of flight data records obtained from an airline containing flights that suffered from excessive vibration. Results were obtained using MPI (Message Passing Interface) on a high performance computing (HPC) cluster, evolving 1000 different LSTM cell structures using 208 cores over 21 days. The new evolved LSTM cells showed an improvement of 1.34%, reducing the mean prediction error from 5.61% to 4.27% when predicting excessive engine vibrations 10 s in the future, while at the same time dramatically reducing the number of weights from 21,170 to 13,150. The optimized LSTM also performed significantly better than traditional Nonlinear Output Error (NOE), Nonlinear AutoRegression with eXogenous (NARX) inputs, and Nonlinear Box-Jenkins (NBJ) models, which only reached error rates of 15.73%, 12.06% and 15.05%, respectively. Furthermore, the LSTM regularization method was used to validate the ACO. The ACO LSTM out performed the regularized LSTM by 3.35%. The NOE, NARX, and NBJ models were also regularized for cross validation, and the mean prediction errors were 8.70%, 9.40%, and 9.43% respectively, which gives credit for the ant colony optimized LSTM RNN. (C) 2018 Elsevier B.V. All rights reserved.
机译:本文扩展了开发经常性神经网络(RNN)的研究,能够使用长短期记忆(LSTM)神经元预测飞机发动机振动。 LSTM RNN可以提供更广泛的且稳健的方法,用于预测发动机振动的分析计算,因为必须基于特定的经验发动机参数迭代地解决分析计算,使得这种方法在多个发动机上都是不可形成的。在初始化工作中,提出了多个LSTM RNN架构,评估和比较。本研究通过使用基于蚁群优化(ACO)的有希望的神经发展方法来开发和增强网络的LSTM小区结构,提高了先前工作中提出的最有效的LSTM网络设计的性能。已经开发了ACO神经形式算法的并行化版本,并将演化的LSTM RNN与先前使用的固定拓扑进行了比较。演进的网络培训了从含有过度振动的航空公司获得的航空公司获得的大型飞行数据记录数据库。使用MPI(消息传递接口)在高性能计算(HPC)群集中获得的结果,在21天内使用208个核心的1000个不同的LSTM单元结构。新的进化LSTM细胞显示出1.34%的提高,在将来预测过量发动机振动10s时,平均预测误差从5.61%降低到4.27%,同时显着降低21,170至13,150的重量数。优化的LSTM也比传统的非线性输出误差(NOE),非线性释s,与外源性(NARX)输入,非线性箱 - Jenkins(NBJ)模型进行了显着更好,该模型仅达到了15.73%,12.06%和15.05%的错误率,分别。此外,LSTM正则化方法用于验证ACO。 ACO LSTM OUT通过3.35%进行了正则化LSTM。 NOE,NARX和NBJ模型也定期进行交叉验证,平均预测误差分别为8.70%,9.40%和9.43%,这为蚁群优化的LSTM RNN提供了学分。 (c)2018 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号