首页> 外文OA文献 >Monitoring activities from multiple video streams: establishing a common coordinate frame
【2h】

Monitoring activities from multiple video streams: establishing a common coordinate frame

机译:从多个视频流监控活动:建立一个公共坐标帧

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Passive monitoring of large sites typically requires coordination between multiple cameras, which in turn requires methods for automatically relating events between distributed cameras. This paper tackles the problem of self-calibration of multiple cameras which are very far apart, using feature correspondences to determine the camera geometry. The key problem is finding such correspondences. Since the camera geometry and photometric characteristics vary considerably between images, one cannot use brightness and/or proximity constraints. Instead we apply planar geometric constraints to moving objects in the scene in order to align the scene"s ground plane across multiple views. We do not assume synchronized cameras, and we show that enforcing geometric constraints enables us to align the tracking data in time. Once we have recovered the homography which aligns the planar structure in the scene, we can compute from the homography matrix the 3D position of the plane and the relative camera positions. This in turn enables us to recover a homography matrix which maps the images to an overhead view. We demonstrate this technique in two settings: a controlled lab setting where we test the effects of errors in internal camera calibration, and an uncontrolled, outdoor setting in which the full procedure is applied to external camera calibration and ground plane recovery. In spite of noise in the internal camera parameters and image data, the system successfully recovers both planar structure and relative camera positions in both settings.
机译:大型站点的被动监视通常需要多个摄像机之间的协调,这又需要用于自动关联分布式摄像机之间的事件的方法。本文使用功能对应关系确定相机的几何形状,解决了多个相距很远的相机的自校准问题。关键问题是找到这种对应关系。由于相机的几何形状和光度特性在图像之间变化很大,因此无法使用亮度和/或接近度约束。取而代之的是,我们对场景中的移动对象应用平面几何约束,以使场景的地平面在多个视图之间对齐。我们不假设使用同步摄像机,并且我们证明了实施几何约束可以使我们及时对齐跟踪数据。一旦恢复了与场景中的平面结构对齐的单应性,就可以从单应性矩阵中计算平面的3D位置和相对摄像机位置,从而使我们能够恢复将图像映射到像素的单应性矩阵。我们在两个设置中演示了该技术:在受控的实验室设置中测试内部相机校准中的误差影响;在不受控制的室外设置中,将整个过程应用于外部相机校准和地平面恢复。尽管内部摄像机参数和图像数据中存在噪声,该系统仍可以成功恢复平面结构和摄像机相对位置设置。

著录项

  • 作者

    L. Lee; R. Romano; G. Stein;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_us
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号