首页> 外文OA文献 >Multi-Model Approaches for Improving Seasonal Ensemble Streamflow Prediction Scheme with Various Statistical Post-Processing Techniques in the Canadian Prairie Region
【2h】

Multi-Model Approaches for Improving Seasonal Ensemble Streamflow Prediction Scheme with Various Statistical Post-Processing Techniques in the Canadian Prairie Region

机译:改善季节集合流式流动预测方案与加拿大大草原区各种统计后处理技术的多模型方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hydrologic models are an approximation of reality, and thus, are not able to perfectly simulate observed streamflow because of various sources of uncertainty. On the other hand, skillful operational hydrologic forecasts are vital in water resources engineering and management for preparedness against flooding and extreme events. Multi-model techniques can be used to help represent and quantify various uncertainties in forecasting. In this paper, we assess the performance of a Multi-model Seasonal Ensemble Streamflow Prediction (MSESP) scheme coupled with statistical post-processing techniques to issue operational uncertainty for the Manitoba Hydrologic Forecasting Centre (HFC). The Ensemble Streamflow Predictions (ESPs) from WATFLOOD and SWAT hydrologic models were used along with four statistical post-processing techniques: Linear Regression (LR), Quantile Mapping (QM), Quantile Model Averaging (QMA), and Bayesian Model Averaging (BMA)]. The quality of MSESP was investigated from April to July with a lead time of three months for the Upper Assiniboine River Basin (UARB) at Kamsack, Canada. While multi-model ESPs coupled with post-processing techniques improve predictability (in general), results suggest that additional avenues for improving the skill and value of seasonal streamflow prediction. Next steps towards an operational ESP system include adding more operationally used models, improving models calibration methods to reduce model bias, increasing ESP sample size, and testing ESP schemes at multiple lead times, which, once developed, will not only help HFCs in Canada but would also help Centers South of the Border.
机译:水文模型是现实的近似,因此由于各种不确定性来源,不能完全模拟观察到的流流。另一方面,熟练的操作水文预测在水资源工程和管理中至关重要,用于对洪水和极端事件的准备。可以使用多模型技术来帮助表示和量化预测中的各种不确定性。在本文中,我们评估了多模型季节集合流流出预测(MSEP)方案的性能,耦合统计后处理技术,以对Manitoba水文预报中心(HFC)发出运营不确定性。来自Watflood和SWAT水文模型的集合流式预测(ESP)以及四种统计后处理技术:线性回归(LR),定量映射(QM),定量模型平均(QMA)和贝叶斯模型平均(BMA) ]。从4月到7月调查了MSEMP的质量,在加拿大Kamsack的上部Assiniboine河流域(UARB)的主要时间为三个月。虽然多模型ESP与后处理技术相结合,但提高可预测性(一般来说),结果表明,用于提高季节流流程预测的技能和价值的额外途径。朝着运营ESP系统的下一步包括添加更多操作使用的模型,改善了模型校准方法,以降低模型偏差,增加ESP样本大小,并在多个交货时间内测试ESP方案,这是一旦开发的,这将不仅在加拿大帮助氢氟碳化合物,而且也会帮助边境的南方。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号