首页> 外文OA文献 >Detection and Classification of Bearing Surface Defects Based on Machine Vision
【2h】

Detection and Classification of Bearing Surface Defects Based on Machine Vision

机译:基于机器视觉的轴承表面缺陷的检测与分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Surface defects on bearings can directly affect the service life and reduce the performance of equipment. At present, the detection of bearing surface defects is mostly done manually, which is labor-intensive and results in poor stability. To improve the inspection speed and the defect recognition rate, we proposed a bearing surface defect detection and classification method using machine vision technology. The method makes two main contributions. It proposes a local multi-neural network (Lc-MNN) image segmentation algorithm with the wavelet transform as the classification feature. The precision segmentation of the defect image is accomplished in three steps: wavelet feature extraction, Lc-MNN region division, and Lc-MNN classification. It also proposes a feature selection algorithm (SCV) that makes comprehensive use of scalar feature selection, correlation analysis, and vector feature selection to first remove similar features through correlation analysis, further screen the results with a scalar feature selection algorithm, and finally select the classification features using a feature vector selection algorithm. Using 600 test samples with three types of defect in the experiment, an identification rate of 99.5% was achieved without the need for large-scale calculation. The comparison tests indicated that the proposed method can achieve efficient feature selection and defect classification.
机译:轴承上的表面缺陷可以直接影响使用寿命并降低设备的性能。目前,轴承表面缺陷的检测主要是手动完成的,这是劳动密集型的,导致稳定性差。为了提高检查速度和缺陷识别率,我们提出了一种使用机器视觉技术的轴承表面缺陷检测和分类方法。该方法进行了两个主要贡献。它提出了一种作为分类特征的小波变换的局部多神经网络(LC-MNN)图像分割算法。缺陷图像的精度分割是以三个步骤完成的:小波特征提取,LC-MNN区域分割和LC-MNN分类。它还提出了一种特征选择算法(SCV),该特征选择算法(SCV)通过相关性分析,首先删除类似特征的标量选择算法(SCV),以首先删除类似的特征,进一步屏蔽标量选择算法的结果,最后选择了使用特征向量选择算法的分类功能。在实验中使用具有三种类型的缺陷的600个测试样品,识别99.5%而无需大规模计算。比较测试表明,该方法可以实现有效的特征选择和缺陷分类。

著录项

  • 作者

    Manhuai Lu; Chin-Ling Chen;

  • 作者单位
  • 年度 2021
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号