首页> 外文OA文献 >Efficient ConvNet Feature Extraction with Multiple RoI Pooling for Landmark-Based Visual Localization of Autonomous Vehicles
【2h】

Efficient ConvNet Feature Extraction with Multiple RoI Pooling for Landmark-Based Visual Localization of Autonomous Vehicles

机译:高效的Convnet功能提取,具有多个ROI池,用于自主车辆的地标基础视觉定位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Efficient and robust visual localization is important for autonomous vehicles. By achieving impressive localization accuracy under conditions of significant changes, ConvNet landmark-based approach has attracted the attention of people in several research communities including autonomous vehicles. Such an approach relies heavily on the outstanding discrimination power of ConvNet features to match detected landmarks between images. However, a major challenge of this approach is how to extract discriminative ConvNet features efficiently. To address this challenging, inspired by the high efficiency of the region of interest (RoI) pooling layer, we propose a Multiple RoI (MRoI) pooling technique, an enhancement of RoI, and a simple yet efficient ConvNet feature extraction method. Our idea is to leverage MRoI pooling to exploit multilevel and multiresolution information from multiple convolutional layers and then fuse them to improve the discrimination capacity of the final ConvNet features. The main advantages of our method are (a) high computational efficiency for real-time applications; (b) GPU memory efficiency for mobile applications; and (c) use of pretrained model without fine-tuning or retraining for easy implementation. Experimental results on four datasets have demonstrated not only the above advantages but also the high discriminating power of the extracted ConvNet features with state-of-the-art localization accuracy.
机译:高效和强大的视觉本地化对于自动车辆很重要。通过在重大变化条件下实现令人印象深刻的本地化准确性,基于Convnet的地标方法引起了几个研究社区的人们的注意力,包括自动车辆。这种方法严重依赖于ConvNet功能的突出辨别力,以匹配检测到的图像之间的地标。然而,这种方法的主要挑战是如何有效地提取歧视性的Convnet特征。为了解决这一具有挑战性的,灵感来自感兴趣区域(ROI)池层的高效率,我们提出了一种多ROI(MROI)池技术,ROI的增强,以及简单但有效的ConvNET功能提取方法。我们的想法是利用MROI汇集来利用来自多个卷积层的多级和多级地点信息,然后熔化它们以提高最终ConvNet功能的辨别能力。我们方法的主要优点是(a)实时应用的高计算效率; (b)移动应用的GPU内存效率; (c)使用预磨模的模型,无需微调或刷新,以便于实现。四个数据集的实验结果不仅证明了上述优点,而且还表明了提取的ConvNet特征的高区别力,具有最先进的本地化精度。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号