Let $M$ be a symplectic toric manifold acted on by a torus $mathbb{T}$. Inthis work we exhibit an explicit basis for the equivariant K-theory ring$mathcal{K}_{mathbb{T}}(M)$ which is canonically associated to a genericcomponent of the moment map. We provide a combinatorial algorithm for computingthe restrictions of the elements of this basis to the fixed point set; these,in turn, determine the ring structure of $mathcal{K}_{mathbb{T}}(M)$. Theconstruction is based on the notion of local index at a fixed point, similar tothat introduced by Guillemin and Kogan in [GK]. We apply the same techniques to exhibit an explicit basis for the equivariantcohomology ring $H_{mathbb{T}}(M; mathbb{Z})$ which is canonically associatedto a generic component of the moment map. Moreover we prove that the elementsof this basis coincide with some well-known sets of classes: the equivariantPoincar'e duals to the closures of unstable manifolds, and also the canonicalclasses introduced by Goldin and Tolman in [GT], which exist whenever themoment map is index increasing.
展开▼
机译:让$ M $是一个辛复制歧管由Torus $ mathbb {t} $代表。 Inthis Works我们对等意大动的K-theation Ring $ Mathcal {k} _ { MathBB {k}}(m)$的明确基础,这是与瞬间映射的通用组合的Conouncy关联。我们提供了一种组合算法,用于计算此基础的元素的限制到固定点集;反过来,这些确定$ mathcal {k} _ { mathbb {t}}(m)$的环结构。 Theconstruction是基于当地指数的概念,在一个定点,瓜突和Kogan引入了类似的Tothat在[GK]。我们应用了同样的技术,以表现出展示的等分之的Cohomology Ring $ H _ { mathbb {r}}(m; mathbb {z})$,它是Conounly与瞬间映射的通用组件相关联。此外,我们证明了这一基础的元素与一些着名的课程恰逢其有:诸如不稳定的歧管的封闭件的封闭件,以及金属纳和Tolman在[gt]中引入的规范条款,每当处于侦探地图是指数越来越多。
展开▼