首页> 外文OA文献 >A Laplace transform approach to linear equations with infinitely many derivatives and zeta-nonlocal field equations
【2h】

A Laplace transform approach to linear equations with infinitely many derivatives and zeta-nonlocal field equations

机译:具有无限多种衍生物和Zeta - 非本地方程的线性方程的拉普拉斯变换方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study existence, uniqueness and regularity of solutions for linearequations in infinitely many derivatives. We develop a natural framework basedon Laplace transform as a correspondence between appropriate $L^p$ and Hardyspaces: this point of view allows us to interpret rigorously operators of theform $f(partial_t)$ where $f$ is an analytic function such as (the analyticcontinuation of) the Riemann zeta function. We find the most general solutionto the equation egin{equation*} f(partial_t) phi = J(t) ; , ; ; ; tgeq 0 ; , end{equation*} in a convenient class of functions, we define andsolve its corresponding initial value problem, and we state conditions underwhich the solution is of class $C^k,, k geq 0$. More specifically, we provethat if some a priori information is specified, then the initial value problemis well-posed and it can be solved using only a {em finite number} of localinitial data. Also, motivated by some intriguing work by Dragovich andAref'eva-Volovich on cosmology, we solve explicitly field equations of the formegin{equation*} zeta(partial_t + h) phi = J(t) ; , ; ; ; t geq 0 ; ,end{equation*} in which $zeta$ is the Riemann zeta function and $h > 1$.Finally, we remark that the $L^2$ case of our general theory allows us to givea precise meaning to the often-used interpretation of $f(partial_t)$ as anoperator defined by a power series in the differential operator $partial_t$.
机译:我们在无限许多衍生物中研究了LineAr等级解决方案的存在,独特性和规律性。我们开发一个基于Laplact变换的自然框架作为适当$ L ^ P $和HardsPaces的对应关系:此观点允许我们解释Romfor $ F( Partial_t)$的严格运营商,其中$ F $是一个分析功能(分析Continuition)riemann Zeta功能。我们发现最常见的方案开始{arequation *} f( partial_t) phi = j(t); ,; t geq 0 ; ,结束{等式*}在方便的函数类中,我们定义了它的相应初始值问题,我们的状态条件下方的条件是C ^ k,,k geq 0 $。更具体地说,我们已经证明了如果指定了一些先验信息,则初始值问题良好地呈现,并且它可以仅使用LocalInitial数据的{ EM Unitite}来解决。此外,通过龙道·安达拉夫·沃洛维奇对宇宙学的一些有趣工作,我们解决了形式的明确场方程 begin {公式*} zeta( partial_t + h) phi = j(t); ,; t geq 0 ; ,结束{等式*}其中$ zeta $是riemann zeta函数和$ h> 1 $。最后,我们谨此评论我们的一般理论的$ ^ 2 $案例使我们能够致力于经常致内意义用于差分运算符$ partial_t $ partial_t $的Power系列定义的F( Partial_t)$的oneoperator的解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号