首页> 外文OA文献 >Insights from Self-Organizing Maps for Predicting Accessibility Demand for Healthcare Infrastructure
【2h】

Insights from Self-Organizing Maps for Predicting Accessibility Demand for Healthcare Infrastructure

机译:自组织地图的见解,以预测医疗基础设施的可访问性需求

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As urban populations grow worldwide, it becomes increasingly important to critically analyse accessibility—the ease with which residents can reach key places or opportunities. The combination of ‘big data’ and advances in computational techniques such as machine learning (ML) could be a boon for urban accessibility studies, yet their application in this field remains limited. In this study, we provided detailed predictions of healthcare accessibility across a rapidly growing city and related them to socio-economic factors using a combination of classical and modern data analysis methods. Using the City of Surrey (Canada) as a case study, we clustered high-resolution income data for 2016 and 2022 using principal component analysis (PCA) and a powerful ML clustering tool, the self-organising map (SOM). We then combined this with door-to-door travel times to hospitals and clinics, calculated using a simple open-source tool. Focusing our analysis on senior populations (65+ years), we found that higher income clusters are projected to become more prevalent across Surrey over our study period. Low income clusters have on average better accessibility to healthcare facilities than high income clusters in both 2016 and 2022. Population growth will be the biggest accessibility challenge in neighbourhoods with good existing access to healthcare, whereas income change (both positive and negative) will be most challenging in poorly connected neighbourhoods. A dual accessibility problem may arise in Surrey: first, large senior populations will reside in areas with access to numerous and close-by, clinics, putting pressure on existing facilities for specialised services. Second, lower-income seniors will increasingly reside in areas poorly connected to healthcare services, which may impact accessibility equity. We demonstrate that combining PCA and SOM clustering techniques results in novel insights for predicting accessibility at the neighbourhood level. This allows for robust planning policy recommendations to be drawn from large multivariate datasets.
机译:随着城市人口在全球范围内成长,对批判性分析可访问性变得越来越重要 - 居民可以达到关键地方或机会的轻松。 “大数据”和计算技术的进步(如机器学习(ML)的进步可能是城市可访问性研究的福音,但它们在该领域的应用仍然有限。在这项研究中,我们在快速增长的城市提供了对医疗保健可爱性的详细预测,并使用经典和现代数据分析方法的组合将其与社会经济因素相关联。使用萨里市(加拿大)作为案例研究,我们使用主成分分析(PCA)和强大的ML集群工具,自组织地图(SOM)聚集了2016年和2022年的高分辨率收入数据。然后,我们将其与门到门的旅行时间与医院和诊所组合起来,使用简单的开源工具计算。我们发现我们对高级人口的分析(65岁以上),我们发现在我们的学习期间,预计将在萨里逐渐变得更加普遍。低收入集群在2016年和2022年的高收入集群比高收入集群上平均更好地可达。人口增长将是邻里最大的良好挑战良好的医疗保健机会,而收入变化(积极和消极)将是最大的在邻近的邻居中挑战。萨里可能出现了一种双重访问问题:首先,大型高级人口将居住在有众多和近距离,诊所的地区,对专业服务的现有设施进行压力。其次,低收入的老年人将越来越多地居住在与医疗保健服务不足的地区,这可能会影响可接近的公平。我们展示了组合PCA和SOM聚类技术导致用于预测邻域级的可访问性的新颖见解。这允许从大型多变量数据集中汲取强大的规划策略建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号