首页> 外文OA文献 >An Improved Adaptive Minimum Action Method for the Calculation of Transition Path in Non-Gradient Systems
【2h】

An Improved Adaptive Minimum Action Method for the Calculation of Transition Path in Non-Gradient Systems

机译:一种改进的自适应最小动作方法,用于计算非梯度系统中的过渡路径

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The minimum action method (MAM) is to calculate the most probable transitionpath in randomly perturbed stochastic dynamics, based on the idea of actionminimization in the path space. The accuracy of the numerical path betweendifferent metastable states usually suffers from the "clustering problem" nearfixed points. The adaptive minimum action method (aMAM) solves this problem byrelocating image points equally along arc-length with the help of moving meshstrategy. However, when the time interval is large, the images on the path maystill be locally trapped around the transition state in a tangle, due to thesingularity of the relationship between arc-length and time at the transitionstate. Additionally, in most non-gradient dynamics, the tangent direction ofthe path is not continuous at the transition state so that a geometric cornerforms, which brings extra challenges for the aMAM. In this note, we improve theaMAM by proposing a better monitor function that does not contain the numericalapproximation of derivatives, and taking use of a generalized scheme of theEuler-Lagrange equation to solve the minimization problem, so that both thepath-tangling problem and the non-smoothness in parametrizing the curve do notexist. To further improve the accuracy, we apply the Weighted Essentiallynon-oscillatory (WENO) method for the interpolation to achieve betterperformance. Numerical examples are presented to demonstrate the advantages ofour new method.
机译:最小动作方法(MAM)是计算最可能的transitionpath在随机扰动随机动力学,基于在路径空间actionminimization的想法。数值路径betweendifferent亚稳态精度通常从“聚类问题” nearfixed点受到影响。自适应最小动作方法(AMAM)解决了这个问题byrelocating图像点同样沿圆弧长度与移动meshstrategy的帮助。然而,当时间间隔较大时,该路径上的图像maystill局部截留围绕过渡状态中纠结,由于在transitionstate弧长和时间之间的关系的thesingularity。另外,在大多数非梯度动力学,切线方向的路径国税发不处于过渡状态连续,使得几何cornerforms,这带来了额外的AMAM挑战。在这份说明中,我们提高theaMAM通过提出不包含衍生工具的numericalapproximation更好的监控功能,并考虑使用theEuler - 拉格朗日方程的推广计划,以解决最小化问题,这样既thepath缠结问题和非-smoothness在参数化的曲线办法抹杀做。为了进一步提高精度,我们申请插值来实现betterperformance加权Essentiallynon-振荡(WENO)方法。数值算例来证明新的我们心仪方法的优势。

著录项

  • 作者

    Yiqun Sun; Xiang Zhou;

  • 作者单位
  • 年度 2018
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号