首页> 外文OA文献 >Comparison of approximation methods to Kullback–Leibler divergence between Gaussian mixture models for satellite image retrieval
【2h】

Comparison of approximation methods to Kullback–Leibler divergence between Gaussian mixture models for satellite image retrieval

机译:近似近似卫拉 - 雷布尔分解卫星图像检索的kullback-leibler分歧的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As a probabilistic distance between two probability density functions, Kullback-Leibler divergence is widely used in many applications, such as image retrieval and change detection. Unfortunately, for some models, e.g., Gaussian Mixture Models (GMMs), Kullback-Leibler divergence is not analytically tractable. One has to resort to approximation methods. A number of methods have been proposed to address this issue. In this letter, we compare seven methods, namely Monte Carlo method, matched bound approximation, product of Gaussians, variational method, unscented transformation, Gaussian approximation, and min-Gaussian approximation, for approximating the Kullback-Leibler divergence between two Gaussian mixture models for satellite image retrieval. Two experiments using two public datasets have been performed. The comparison is carried out in terms of retrieval accuracy and computational time.
机译:作为两个概率密度函数之间的概率距离,Kullback-Leibler发散广泛用于许多应用中,例如图像检索和改变检测。遗憾的是,对于某些型号,例如,高斯混合模型(GMMS),Kullback-Leibler发散没有分析易行。一个人必须诉诸近似方法。已经提出了许多方法来解决这个问题。在这封信中,我们比较七种方法,即蒙特卡罗方法,匹配的绑定近似,高斯的乘积,变形方法,无编号的变换,高斯近似和最小高斯近似,用于近似于两个高斯混合模型之间的kullback-leibler发散卫星图像检索。已经执行了使用两个公共数据集的两个实验。在检索准确性和计算时间方面进行比较。

著录项

  • 作者

    Shiyong Cui;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号