首页> 外文OA文献 >2D recurrent neural networks: a high-performance tool for robust visual tracking in dynamic scenes
【2h】

2D recurrent neural networks: a high-performance tool for robust visual tracking in dynamic scenes

机译:2D复发性神经网络:在动态场景中强大的视觉跟踪的高性能工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

© 2017 The Natural Computing Applications Forum This paper proposes a novel method for robust visual tracking of arbitrary objects, based on the combination of image-based prediction and position refinement by weighted correlation. The effectiveness of the proposed approach is demonstrated on a challenging set of dynamic video sequences, extracted from the final of triple jump at the London 2012 Summer Olympics. A comparison is made against five baseline tracking systems. The novel system shows remarkable superior performances with respect to the other methods, in all considered cases characterized by changing background, and a large variety of articulated motions. The novel architecture, from here onward named 2D Recurrent Neural Network (2D-RNN), is derived from the well-known recurrent neural network model and adopts nearest neighborhood connections between the input and context layers in order to store the temporal information content of the video. Starting from the selection of the object of interest in the first frame, neural computation is applied to predict the position of the target in each video frame. Normalized cross-correlation is then applied to refine the predicted target position. 2D-RNN ensures limited complexity, great adaptability and a very fast learning time. At the same time, it shows on the considered dataset fast execution times and very good accuracy, making this approach an excellent candidate for automated analysis of complex video streams.
机译:©2017自然计算应用论坛本文提出了一种基于基于图像的预测和位置细化的基于加权相关性的基于图像的预测和位置细化的任意对象的鲁棒性视觉跟踪的新方法。在伦敦2012年夏季奥运会上的三重跳跃决赛中提取了挑战性的动态视频序列的挑战性集合的效果。对五个基线跟踪系统进行了比较。新颖的系统在其他方法中显示出显着的优异性能,在所有考虑的案例中,其特征在于改变背景和大量铰接运动。从这里从这里命名的2D反复性神经网络(2D-RNN)(2D-RNN)来源的新颖架构源自众所周知的复发性神经网络模型,并采用输入和上下文层之间的最近的邻域连接,以存储时间信息内容视频。从在第一帧中的感兴趣对象的选择开始,应用神经计算来预测每个视频帧中的目标的位置。然后应用归一化交叉相关以优化预测的目标位置。 2D-RNN确保了有限的复杂性,适应性和非常快的学习时间。与此同时,它显示了考虑的数据集快速执行时间和非常好的准确性,使得这种方法是复杂视频流自动分析的优秀候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号