首页> 外文OA文献 >Wearable Driver Distraction Identification On-The-Road via Continuous Decomposition of Galvanic Skin Responses
【2h】

Wearable Driver Distraction Identification On-The-Road via Continuous Decomposition of Galvanic Skin Responses

机译:可穿戴驾驶员分散识别在路上通过连续分解电流皮肤反应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the main reasons for fatal accidents on the road is distracted driving. The continuous attention of an individual driver is a necessity for the task of driving. While driving, certain levels of distraction can cause drivers to lose their attention, which might lead to an accident. Thus, the number of accidents can be reduced by early detection of distraction. Many studies have been conducted to automatically detect driver distraction. Although camera-based techniques have been successfully employed to characterize driver distraction, the risk of privacy violation is high. On the other hand, physiological signals have shown to be a privacy preserving and reliable indicator of driver state, while the acquisition technology might be intrusive to drivers in practical implementation. In this study, we investigate a continuous measure of phasic Galvanic Skin Responses (GSR) using a wristband wearable to identify distraction of drivers during a driving experiment on-the-road. We first decompose the raw GSR signal into its phasic and tonic components using Continuous Decomposition Analysis (CDA), and then the continuous phasic component containing relevant characteristics of the skin conductance signals is investigated for further analysis. We generated a high resolution spectro-temporal transformation of the GSR signals for non-distracted and distracted (calling and texting) scenarios to visualize the associated behavior of the decomposed phasic GSR signal in correlation with distracted scenarios. According to the spectrogram observations, we extract relevant spectral and temporal features to capture the patterns associated with the distracted scenarios at the physiological level. We then performed feature selection using support vector machine recursive feature elimination (SVM-RFE) in order to: (1) generate a rank of the distinguishing features among the subject population, and (2) create a reduced feature subset toward more efficient distraction identification on the edge at the generalization phase. We employed support vector machine (SVM) to generate the 10-fold cross validation (10-CV) identification performance measures. Our experimental results demonstrated cross-validation accuracy of 94.81% using all the features and the accuracy of 93.01% using reduced feature space. The SVM-RFE selected set of features generated a marginal decrease in accuracy while reducing the redundancy in the input feature space toward shorter response time necessary for early notification of distracted state of the driver.
机译:道路上致命事故的主要原因之一分散了驾驶分心。个人驾驶员的不断关注是驾驶任务的必要性。在驾驶时,某些程度的分心可能会导致司机失去注意力,这可能导致事故。因此,通过早期检测分散注意力可以减少事故的数量。已经进行了许多研究以自动检测驾驶员分心。虽然基于相机的技术已经成功地用于表征驾驶员分心,但隐私违规的风险很高。另一方面,生理信号已显示是驾驶员状态的隐私保存和可靠指标,而采集技术可能对实际实施中的驱动程序具有侵入性。在这项研究中,我们研究了使用腕带可穿戴腕带的连续测量相位性电压皮肤响应(GSR),以在路上驾驶实验期间识别驾驶员的分心。我们首先使用连续分解分析(CDA)将原始GSR信号分解为其相相和滋补成分,然后研究了含有皮肤电导信号相关特性的连续相位分量进行进一步分析。我们生成了用于非分散注意力和分散注意力(呼叫和发短信)场景的GSR信号的高分辨率光谱 - 时间转换,以使分解相位的GSR信号的相关行为与分心的场景相关。根据谱图观察,我们提取相关的光谱和时间特征,以捕获与生理水平的分心情景相关的模式。然后我们使用支持向量机递归特征消除(SVM-RFE)执行特征选择,以便:(1)在主题群体中生成区别特征的等级,并且(2)创建一个减少的特征子集,朝着更有效的分散识别识别在泛化阶段的边缘。我们采用支持向量机(SVM)来生成10倍交叉验证(10-CV)识别性能措施。我们的实验结果表明,使用缩小的特征空间,使用所有特征和93.01%的精度来显示94.81%的交叉验证精度。 SVM-RFE所选择的一组特征在精度下产生边缘降低,同时降低输入特征空间中的冗余,朝向早期通知驾驶员的分心状态所需的较短响应时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号