首页> 外文OA文献 >Integrating uncertainty propagation in GNSS radio occultation retrieval: from excess phase to atmospheric bending angle profiles
【2h】

Integrating uncertainty propagation in GNSS radio occultation retrieval: from excess phase to atmospheric bending angle profiles

机译:在GNSS无线电掩星检索中整合不确定性传播:从过量相位到大气弯曲角剖面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Global Navigation Satellite System (GNSS) radio occultation (RO) observations are highly accurate, long-term stable data sets, and are globally available as a continuous record since 2001. Essential climate variables for the thermodynamic state of the free atmosphere, such as pressure, temperature and tropospheric water vapor profiles (involving background information), can be derived from these records, which therefore have the potential to serve as climate benchmark data. However, to exploit this potential, atmospheric profile retrievals need to be very accurate and the remaining uncertainties quantified and traced throughout the retrieval chain from raw observations to essential climate variables. The new Reference Occultation Processing System (rOPS) at the Wegener Center aims to deliver such an accurate RO retrieval chain with integrated uncertainty propagation. Here we introduce and demonstrate the algorithms implemented in the rOPS for uncertainty propagation from excess phase to atmospheric bending angle profiles, for estimated systematic and random uncertainties, including vertical error correlations and resolution estimates. We estimated systematic uncertainty profiles with the same operators as used for the basic state profiles retrieval. The random uncertainty is traced through covariance propagation and validated using Monte-Carlo ensemble methods. The algorithm performance is demonstrated using test-day ensembles of simulated data as well as real RO event data from the satellite missions CHAMP and COSMIC. The results of the Monte-Carlo validation show that our covariance propagation delivers correct uncertainty quantification from excess phase to bending angle profiles. The results from the real RO event ensembles demonstrate that the new uncertainty estimation chain performs robustly. Together with the other parts of the rOPS processing chain this part is thus ready to provide integrated uncertainty propagation through the whole RO retrieval chain for the benefit of climate monitoring and other applications
机译:全球导航卫星系统(GNSS)无线电掩星(RO)观测值是高度准确且长期稳定的数据集,并且自2001年以来一直作为连续记录在全球范围内使用。自由大气热力学状态的基本气候变量,例如压力可以从这些记录中得出温度和对流层水汽剖面(包括背景信息),因此有可能用作气候基准数据。然而,为了利用这种潜力,大气廓线的反演需要非常准确,从原始观测到基本气候变量的整个反演链中都必须对剩余的不确定性进行量化和追踪。韦格纳中心的新参考掩星处理系统(rOPS)旨在提供具有整合的不确定性传播的如此精确的反渗透检索链。在这里,我们介绍并演示了在rOPS中实现的算法,该算法用于将不确定性从过剩相位传播到大气弯曲角度剖面,用于估计系统和随机不确定性,包括垂直误差相关性和分辨率估计。我们使用与用于基本状态配置文件检索的运算符相同的运算符来估计系统不确定性配置文件。通过协方差传播追踪随机不确定性,并使用蒙特卡洛集成方法进行验证。使用模拟数据以及来自卫星任务CHAMP和COSMIC的实际RO事件数据的测试日合集来证明算法性能。蒙特卡洛验证的结果表明,我们的协方差传播提供了从过量相位到弯曲角度轮廓的正确不确定性量化。真实的RO事件集合的结果表明,新的不确定性估计链具有强大的性能。因此,该部分与rOPS处理链的其他部分一起准备为整个RO取回链提供集成的不确定性传播,从而有利于气候监测和其他应用

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号