首页> 外文期刊>Atmospheric Measurement Techniques >Integrating uncertainty propagation in GNSS radio occultation retrieval: from excess phase to atmospheric bending angle profiles
【24h】

Integrating uncertainty propagation in GNSS radio occultation retrieval: from excess phase to atmospheric bending angle profiles

机译:在GNSS无线电掩星检索中整合不确定性传播:从过量相位到大气弯曲角剖面

获取原文
           

摘要

Global Navigation Satellite System (GNSS) radio occultation (RO) observations are highly accurate, long-term stable data sets and are globally available as a continuous record from 2001. Essential climate variables for the thermodynamic state of the free atmosphere – such as pressure, temperature, and tropospheric water vapor profiles (involving background information) – can be derived from these records, which therefore have the potential to serve as climate benchmark data. However, to exploit this potential, atmospheric profile retrievals need to be very accurate and the remaining uncertainties quantified and traced throughout the retrieval chain from raw observations to essential climate variables. The new Reference Occultation Processing System (rOPS) at the Wegener Center aims to deliver such an accurate RO retrieval chain with integrated uncertainty propagation. Here we introduce and demonstrate the algorithms implemented in the rOPS for uncertainty propagation from excess phase to atmospheric bending angle profiles, for estimated systematic and random uncertainties, including vertical error correlations and resolution estimates. We estimated systematic uncertainty profiles with the same operators as used for the basic state profiles retrieval. The random uncertainty is traced through covariance propagation and validated using Monte Carlo ensemble methods. The algorithm performance is demonstrated using test day ensembles of simulated data as well as real RO event data from the satellite missions CHAllenging Minisatellite Payload (CHAMP); Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC); and Meteorological Operational Satellite A (MetOp). The results of the Monte Carlo validation show that our covariance propagation delivers correct uncertainty quantification from excess phase to bending angle profiles. The results from the real RO event ensembles demonstrate that the new uncertainty estimation chain performs robustly. Together with the other parts of the rOPS processing chain this part is thus ready to provide integrated uncertainty propagation through the whole RO retrieval chain for the benefit of climate monitoring and other applications.
机译:全球导航卫星系统(GNSS)无线电掩星(RO)观测值是高度准确且长期稳定的数据集,并且从2001年以来可以连续记录的形式在全球范围内使用。自由大气热力学状态的基本气候变量,例如压力,温度和对流层水汽剖面(涉及背景信息)–可以从这些记录中得出,因此有可能用作气候基准数据。然而,为了利用这一潜力,大气廓线的检索需要非常准确,并且从原始观测到基本气候变量,整个检索链中的不确定性都应进行量化和追踪。韦格纳中心的新参考掩星处理系统(rOPS)旨在提供具有整合的不确定性传播的如此精确的反渗透检索链。在这里,我们介绍并演示了在rOPS中实现的算法,该算法用于将不确定性从过剩相位传播到大气弯曲角度剖面,用于估计系统和随机不确定性,包括垂直误差相关性和分辨率估计。我们使用与用于基本状态配置文件检索的运算符相同的运算符来估计系统不确定性配置文件。通过协方差传播追踪随机不确定性,并使用蒙特卡洛集成方法进行验证。使用模拟数据的测试日集合以及来自卫星任务“挑战微型卫星有效载荷”(CHAMP)的真实RO事件数据证明了算法的性能;气象,电离层和气候星座观测系统(COSMIC);气象卫星A(MetOp)。蒙特卡洛验证的结果表明,我们的协方差传播提供了正确的不确定性量化(从过量相位到弯曲角度)。真实的RO事件集合的结果表明,新的不确定性估计链具有强大的性能。因此,该部分与rOPS处理链的其他部分一起准备为整个RO取回链提供集成的不确定性传播,从而有利于气候监测和其他应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号