In this paper, we propose a dynamic resource provisioning scheduler to maximize the application throughput and minimize the computing-plus-communication energy consumption in virtualized networked data centers. The goal is to maximize the energy-efficiency, while meeting hard QoS requirements on processing delay. The resulting optimal resource scheduler is adaptive, and jointly performs: i) admission control of the input traffic offered by the cloud provider; ii) adaptive balanced control and dispatching of the admitted traffic; iii) dynamic reconfiguration and consolidation of the Dynamic Voltage and Frequency Scaling (DVFS)-enabled virtual machines instantiated onto the virtualized data center. The proposed scheduler can manage changes of the workload without requiring server estimation and prediction of its future trend. Furthermore, it takes into account the most advanced mechanisms for power reduction in servers, such as DVFS and reduced power states. Performance of the proposed scheduler is numerically tested and compared against the corresponding ones of some state-of-the-art schedulers, under both synthetically generated and measured real-world workload traces. The results confirm the delay-vs.-energy good performance of the proposed scheduler.
展开▼