首页> 外文期刊>Computing >Energy conservation in cloud data centers by minimizing virtual machines migration through artificial neural network
【24h】

Energy conservation in cloud data centers by minimizing virtual machines migration through artificial neural network

机译:通过最大限度地减少虚拟机通过人工神经网络的迁移,从而节省云数据中心的能源

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing is one of the most attractive cost effective technologies for provisioning information technology (IT) resources to common IT consumers. These resources are provided as service through internet in pay per usage manner, which are mainly classified into application, platform and infrastructure. Cloud provides its services through data centers that possess high configuration servers. The conservation of data centers energy give benefits to both cloud providers and consumers in terms of service time and cost. One of the fundamental services of cloud is infrastructure as a service that provides virtual machines (VMs) as a computing resource to consumers. The VMs are created in data center servers as the machine instances, which could work as a dedicated computer system for consumers. As cloud provides the feature of elasticity, the consumers can change their resource demand during service. This characteristics leads VMs migration is unavoidable in cloud environment. The increased down time of VMs in migration affects the efficiency of cloud service. The minimization of VMs migration reduces the processing time that ultimately saves the energy of data centers. The proposed methodology in this work utilizes genetically weight optimized artificial neural network to predict the near future availability of data center servers. Based on the future availability of resources the VMs management activities are performed. The implementation results demonstrated that the proposed methodology significantly reduces the processing time of data centers and the response time of customer applications by minimizing VMs migration.
机译:云计算是向普通IT消费者提供信息技术(IT)资源的最具吸引力的成本效益技术之一。这些资源以按使用量付费的方式通过互联网作为服务提供,主要分为应用程序,平台和基础架构。云通过拥有高配置服务器的数据中心提供服务。数据中心的能源节约在服务时间和成本方面为云提供商和消费者带来了好处。云的基本服务之一是基础架构即服务,将虚拟机(VM)作为计算资源提供给消费者。 VM在数据中心服务器中作为机器实例创建,可以用作消费者的专用计算机系统。由于云提供了弹性功能,因此消费者可以在服务期间更改其资源需求。这种特性导致虚拟机迁移在云环境中不可避免。 VM在迁移中的停机时间增加会影响云服务的效率。 VM迁移的最小化减少了处理时间,最终节省了数据中心的能源。在这项工作中提出的方法论利用遗传加权优化的人工神经网络来预测数据中心服务器在不久的将来的可用性。根据将来的资源可用性,执行VM管理活动。实施结果表明,所提出的方法通过最大程度地减少了VM的迁移,大大减少了数据中心的处理时间和客户应用程序的响应时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号