首页> 外文OA文献 >Adaptive Baseline Finder, a statistical data selection strategy to identify atmospheric CO2 baseline levels and its application to European elevated mountain stations
【2h】

Adaptive Baseline Finder, a statistical data selection strategy to identify atmospheric CO2 baseline levels and its application to European elevated mountain stations

机译:自适应基线查找器,一种统计数据选择策略,用于识别大气中二氧化碳的基线水平及其在欧洲高架山地站中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Critical data selection is essential for determining representative baseline levels of atmospheric trace gas measurements even at remote measuring sites. Different data selection techniques have been used around the world which could potentially lead to bias when comparing data from different stations. This paper presents a novel statistical data selection method based on CO diurnal pattern occurring typically at high elevated mountain stations. Its capability and applicability was studied for atmospheric measuring records of CO from 2010 to 2016 at six Global Atmosphere Watch (GAW) stations in Europe, namely Zugspitze-Schneefernerhaus (Germany), Sonnblick (Austria), Jungfraujoch (Switzerland), Izaña (Spain), Schauinsland (Germany) and Hohenpeissenberg (Germany). Three other frequently applied statistical data selection methods were implemented for comparison. Among all selection routines, the new method named Adaptive Baseline Finder (ABF) resulted in lower selection percentages with lower maxima during winter and higher minima during summer in the selected data. To investigate long-term trend and seasonality, seasonal decomposition technique STL was applied. Compared with the unselected data, mean annual growth rates of all selected data sets were not significantly different except for Schauinsland. However, clear differences were found in the annual amplitudes as well as for the seasonal time structure. Based on correlation analysis, results by ABF selection showed a better representation of the lower free tropospheric conditions.
机译:关键数据选择对于确定代表性的大气痕量气体测量基线水平至关重要,即使在远程测量站点也是如此。世界各地已使用了不同的数据选择技术,在比较来自不同站点的数据时可能会导致偏差。本文提出了一种新的统计数据选择方法,该方法基于通常在高海拔山区站发生的CO日变化模式。在欧洲的六个全球大气监视站(GAW)分别于2010年至2016年对CO的大气测量记录进行了研究,研究了其功能和适用性,分别位于楚格峰-舒尼弗内尔豪斯(德国),桑比克(奥地利),少女峰(瑞士),伊萨尼亚(西班牙) ,肖恩斯兰(德国)和霍恩佩森贝格(德国)。进行了三种其他常用的统计数据选择方法进行比较。在所有选择例行程序中,名为自适应基线查找器(ABF)的新方法在所选数据中导致较低的选择百分比,冬季的较低最大值和夏季的较高最小值。为了研究长期趋势和季节性,应用了季节性分解技术STL。与未选择的数据相比,除Schauinsland外,所有选择的数据集的年均增长率均无显着差异。但是,在年度振幅和季节性时间结构中发现了明显的差异。基于相关性分析,通过ABF选择得到的结果更好地表示了较低的对流层自由状态。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号