首页> 外文OA文献 >A Travel Behavior-Based Skip-Stop Strategy Considering Train Choice Behaviors Based on Smartcard Data
【2h】

A Travel Behavior-Based Skip-Stop Strategy Considering Train Choice Behaviors Based on Smartcard Data

机译:考虑基于SmartCard数据的列车选择行为的基于旅行行为的跳过策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study analyzes a skip-stop strategy considering four types of train choice behavior with smartcard data. The proposed model aims to minimize total travel time with realistic constraints such as facility condition, operational condition, and travel behavior. The travel time from smartcard data is decomposed by two distributions of the express trains and the local trains using a Gaussian mixture model. The utility parameters of the train choice model are estimated with the decomposed distribution using the multinomial logit model. The optimal solution is derived by a genetic algorithm to designate the express stations of the Bundang line in the Seoul metropolitan area. The results indicate the travel times of the transfer-based strategy and the high ridership-based strategy are estimated to be 21.2 and 19.7 min/person, respectively. Compared to the travel time of the current system, the transfer-based strategy has a 5.8% reduction and the high ridership-based strategy has a 12.2% reduction. For the travel behavior-based strategy, the travel time was estimated to be 18.7 minutes, the ratio of the saved travel time is 17.9%, and the energy consumption shows that the travel behavior-based strategy consumes 305,437 (kWh) of electricity, which is about 12.7% lower compared to the current system.
机译:本研究通过智能卡数据分析了考虑四种列车选择行为的跳过停止策略。所提出的模型旨在最大限度地利用诸如设施条件,操作条件和旅行行为等现实约束的总旅行时间。来自智能卡数据的旅行时间由快速列车的两个分布和使用高斯混合模型的局部列车分解。使用多项式Lo​​git模型的分解分布估计了列车选择模型的实用参数。最佳解决方案是由遗传算法导出的,以指定首尔大都市区的Bondang线路的快速站。结果表明,基于转移的战略和基于高乘客的战略的旅行时间分别为21.2和19.7分钟/人。与目前系统的旅行时间相比,基于转移的策略减少了5.8%,并且基于高乘客的策略减少了12.2%。对于基于旅行行为的策略,旅行时间估计为18.7分钟,所节省的旅行时间的比率为17.9%,能耗表明,基于行为的策略消耗了305,437(千瓦时)的电力与当前系统相比,较低约12.7%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号