首页> 外文OA文献 >Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations
【2h】

Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations

机译:石墨烯的防水长度:非平衡分子动力学模拟的限制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Data for the flow rate of water in carbon nanopores is widely scattered, both in experiments and simulations. In this work, we aim at precisely quantifying the characteristic large slip length and flow rate of water flowing in a planar graphene nanochannel. First, we quantify the slip length using the intrinsic interfacial friction coefficient between water and graphene, which is found from equilibrium molecular dynamics (EMD) simulations. We then calculate the flow rate and the slip length from the streaming velocity profiles obtained using non-equilibrium molecular dynamics (NEMD) simulations and compare with the predictions from the EMD simulations. The slip length calculated from NEMD simulations is found to be extremely sensitive to the curvature of the velocity profile and it possesses large statistical errors. We therefore pose the question: Can a micrometer range slip length be reliably determined using velocity profiles obtained from NEMD simulations? Our answer is 'not practical, if not impossible' based on the analysis given as the results. In the case of high slip systems such as water in carbon nanochannels, the EMD method results are more reliable, accurate, and computationally more efficient compared to the direct NEMD method for predicting the nanofluidic flow rate and hydrodynamic boundary condition.
机译:用于水在碳纳米孔的流率数据被广泛地分散,无论是在实验和仿真。在这项工作中,我们的目标是精确地量化特性大滑移长度和流动的以平面石墨烯纳米通道流动的水率。首先,我们量化使用水和石墨烯之间的内在界面摩擦系数,它是由平衡分子动力学(EMD)模拟中发现的滑移长度。然后我们计算使用非平衡分子动力学(NEMD)模拟得到的流量,并从流速度分布的滑移长度和以从EMD模拟的预测比较。从NEMD模拟计算出的滑移长度被发现是对速度分布的曲率非常敏感,它具有大的统计误差。因此,我们提出这个问题:可以在微米范围内的滑移长度使用从NEMD模拟得到的速度分布被可靠地确定?我们的答案是根据给出的结果分析“不实用,如果不是不可能的”。在高滑系统,如在碳纳米通道的水的情况下,EMD方法的结果是更加可靠,准确,并与用于预测所述纳米流体流量和流体动力学边界条件的直接NEMD方法在计算上更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号